Problem Set 2
 Due: Thursday, February 3

Work all of the following problems. Remember, you are encouraged to work together on Problem Sets, but each student must turn in his or her own write-up. Be sure to adhere to the Rules and Expectations outlined in the Course Information Sheet.

1 Traditional Problems

1. (Gallian, Chapter 2 Exercises, \#26) Prove that if $(a b)^{2}=a^{2} b^{2}$ in a group G, then $a b=b a$.
2. (Gallian, Chapter 2 Exercises, \#39) Let

$$
G=\left\{\left.\left[\begin{array}{ll}
a & a \\
a & a
\end{array}\right] \right\rvert\, a \in \mathbb{R}, a \neq 0\right\} .
$$

Show that G is a group under matrix multiplication. (Notice that each element of G has an inverse even though the matrices have 0 determinant!)
3. Let G be a group. For elements $a, b \in G$, define $a \sim b$ if there is some $x \in G$ with $a=x b x^{-1}$. Prove that \sim is an equivalence relation on G.
4. (Gallian, Chapter 3 Exercises, \#18) Let H and K be subgroups of the group G. Prove that $H \cap K$ is a subgroup of G.
5. (Gallian, Chapter 3 Exercises, $\# 60$) Let G be a finite group with more than one element. Show that G has an element of prime order.
6. (Gallian, Supplementary Exercises for Chapters 1-4, \#2) Let G be a group and let H be a subgroup of G. For any fixed $x \in G$, define

$$
x H x^{-1}=\left\{x h x^{-1} \mid h \in H\right\} .
$$

Define

$$
N(H)=\left\{x \in G \mid x H x^{-1}=H\right\} .
$$

Prove that $N(H)$ (called the normalizer of H) is a subgroup of G.

2 Computer Problems

As outlined on Problem Set 0, please intersperse your GAP commands and output with your explanations. You should create a log file as described in Chapter -1 of the lab manual. If you type up your solutions, you can cut and paste from this log file into your solution file; please use a different font so it is easy to tell what is what. If you hand-write your solutions, you should still print out your log file; then physically cut and paste it into your solutions.

1. Use the GAP commands Size and ulist (see Chapter 2 of the lab manual) to determine the order of the group $U\left(p^{a}\right)$ for various odd primes p and positive integers a. For example taking $p=3$ and $a=1$ means you compute the order of $U(3)$, and taking $p=5$ and $a=3$ means you compute the order of $U(125)$. Do enough examples so that you feel comfortable making a conjecture about the order of $U\left(p^{a}\right)$ where p is an odd prime and a is a positive integer. Carefully state your conjecture and do a few more examples to make sure you believe it. (You do not need to prove your conjecture.) Then use GAP to decide whether your conjecture applies also to the group $U\left(2^{a}\right)$ where a is a positive integer. Explain.
2. Let r and s be relatively prime positive integers, i.e., let r and s be positive integers with $\operatorname{gcd}(r, s)=1$. Use GAP to help you make a conjecture about the order of the group $U(r s)$ in terms of the orders of the groups $U(r)$ and $U(s)$. Again, do enough examples so that you feel comfortable making a conjecture, carefully state your conjecture, and then do a few more examples to make sure you believe it. (You do not need to prove your conjecture.)
3. Use the GAP commands ulist and cyclic (see Chapter 3 of the lab manual) to determine whether the group $U(n)$ is cyclic for various values of n of the form p^{a} where p is an odd prime and a is a positive integer. As usual, do enough examples so that you feel comfortable making a conjecture, carefully state your conjecture, and then do a few more examples to make sure you believe it. (You do not need to prove your conjecture.) Then use GAP to decide whether your conjecture applies also to the group $U\left(2^{a}\right)$ where a is a positive integer. Explain.
