## Problem Set 1 Due: Thursday, January 27

Work all of the following problems. Remember, you are encouraged to work together on Problem Sets, but each student must turn in his or her own write-up. Be sure to adhere to the Rules and Expectations outlined in the Course Information Sheet.

## 1 Traditional Problems

1. (Gallian, Chapter 1 Exercises, \#1) With pictures and words, describe each symmetry in $D_{3}$ (the set of symmetries of an equilateral triangle).
2. (Gallian, Chapter 1 Exercises, \#2) Write out a complete Cayley table for $D_{3}$.
3. (Gallian, Chapter 1 Exercises, $\# 3$ ) Is $D_{3}$ Abelian? Support your answer with either a proof of a specific counter-example.
4. (Gallian, Chapter 2 Exercises, \#6) Give an example of a group and group elements $a$ and $b$ with the property that $a^{-1} b a \neq b$, where $a^{-1}$ denotes the inverse of $a$.
5. (Gallian, Chapter 2 Exercises, \#14) Let $G$ be a group with the following property: Whenever $a, b$, and $c$ belong to $G$ and $a b=c a$, then $b=c$. Prove that $G$ is Abelian.
6. Let $G$ be a group and let $g \in G$. Define a function $\phi_{g}: G \rightarrow G$ by $\phi_{g}(x)=g x g^{-1}$, where $g^{-1}$ is the inverse of $g$, for all $x \in G$. Show that $\phi_{g}$ is one-to-one and onto. (Recall that a function $f$ is one-to-one if whenever $f(a)=f(b)$ we must have $a=b$. Recall that a function $f: S \rightarrow T$ is onto if for each $t \in T$ there is an element $s \in S$ such that $f(s)=t$.)
