## Homework Solutions - Week of October 23

## Section 4.6:

(7) We know that $\lambda=1$ is an eigenvalue of the given matrix $P$ and that $L$ has 2 equal columns which is the probability vector given by the eigenvector with eigenvalue 1 . We need to find $E_{1}$ :

$$
[P-I \mid \mathbf{0}]=\left[\begin{array}{rr|r}
-2 / 3 & 1 / 6 & 0 \\
2 / 3 & -1 / 6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
2 / 3 & -1 / 6 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So, if $\mathbf{x}$ is in the null space of $P-I$, then

$$
\mathbf{x}=\left[\begin{array}{c}
1 / 4 t \\
t
\end{array}\right]
$$

for any $t \in \mathbb{R}$. Letting $t=4$, we see that $E_{1}$ has basis

$$
\left\{\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right\}
$$

We now turn this into a probability vector

$$
\left[\begin{array}{c}
\frac{1}{1+4} \\
\frac{4}{1+4}
\end{array}\right]=\left[\begin{array}{c}
1 / 5 \\
4 / 5
\end{array}\right] .
$$

Therefore,

$$
L=\left[\begin{array}{ll}
1 / 5 & 1 / 5 \\
4 / 5 & 4 / 5
\end{array}\right] .
$$

(8) We know that $\lambda=1$ is an eigenvalue of the given matrix $P$ and that $L$ has 3 equal columns which is the probability vector given by the eigenvector with eigenvalue 1 . We need to find $E_{1}$ :
$[P-I \mid \mathbf{0}]=\left[\begin{array}{ccc|c}-1 / 2 & 1 / 3 & 1 / 6 & 0 \\ 1 / 2 & -1 / 2 & 1 / 3 & \mid \\ 0 & 1 / 6 & -1 / 2 & 0\end{array}\right] \longrightarrow\left[\begin{array}{ccc|c}1 / 2 & -1 / 2 & 1 / 3 & 0 \\ 0 & 1 / 6 & -1 / 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

So, if $\mathbf{x}$ is in the null space of $P-I$, then

$$
\mathbf{x}=\left[\begin{array}{c}
7 / 3 t \\
3 t \\
t
\end{array}\right]
$$

for any $t \in \mathbb{R}$. Letting $t=3$, we see that $E_{1}$ has basis

$$
\left\{\left[\begin{array}{l}
7 \\
9 \\
3
\end{array}\right]\right\} .
$$

We now turn this into a probability vector

$$
\left[\begin{array}{c}
\frac{7}{7+9+3} \\
\frac{9}{7+9+3} \\
\frac{3}{7+9+3}
\end{array}\right]=\left[\begin{array}{c}
7 / 19 \\
9 / 19 \\
3 / 19
\end{array}\right]
$$

Therefore,

$$
L=\left[\begin{array}{lll}
7 / 19 & 7 / 19 & 7 / 19 \\
9 / 19 & 9 / 19 & 9 / 19 \\
3 / 19 & 3 / 19 & 3 / 19
\end{array}\right] .
$$

(57) Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$. Then

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] .
$$

We concentrate on $A$ ! We begin by finding the eigenvalues of $A$ :
$\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}(1-\lambda) & 3 \\ 2 & (2-\lambda)\end{array}\right]=(1-\lambda)(2-\lambda)-6=(\lambda-4)(\lambda+1)$.
We conclude that $A$ has eigenvalues $\lambda_{1}=4$ and $\lambda_{2}=-1$.
To find the eigenspace $E_{4}$ we find the null space of $A-4 I$ :

$$
[(A-4 I) \mid \mathbf{0}]=\left[\begin{array}{rr|r}
-3 & 3 & 0 \\
2 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that

$$
E_{4}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
$$

Thus, a basis for $E_{4}$ is

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

To find the eigenspace $E_{-1}$ we find the null space of $A+I$ :

$$
[(A+I) \mid \mathbf{0}]=\left[\begin{array}{cc|c}
2 & 3 & \mid \\
2 & 3 & \mid 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
2 & 3 & \mid \\
0 & 0 & \mid
\end{array}\right]
$$

We see that

$$
E_{-1}=\operatorname{span}\left(\left[\begin{array}{r}
3 \\
-2
\end{array}\right]\right) .
$$

Thus, a basis for $E_{-1}$ is

$$
\left\{\left[\begin{array}{r}
3 \\
-2
\end{array}\right]\right\}
$$

We see that $A$ is diagonalizable! That is, let

$$
P=\left[\begin{array}{rr}
1 & 3 \\
1 & -2
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{rr}
4 & 0 \\
0 & -1
\end{array}\right]
$$

Then $P^{-1} A P=D$ or, equivalently, $P^{-1} A=D P^{-1}$.
To solve our system of differential equations we now consider the functions $u$ and $v$ which satisfy the equations

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Then

$$
\begin{aligned}
{\left[\begin{array}{c}
u^{\prime} \\
v^{\prime}
\end{array}\right] } & =P^{-1}\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \\
& =P^{-1} A\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =D P^{-1}\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =D\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

That is,

$$
\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
4 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{c}
4 u \\
-v
\end{array}\right] .
$$

In other words,

$$
\begin{aligned}
u^{\prime} & =4 u \\
v^{\prime} & =-v
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
u & =C_{1} e^{4 t} \\
v & =C_{2} e^{-t}
\end{aligned}
$$

for some scalars $C_{1}, C_{2} \in \mathbb{R}$. Thus

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =P\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& =\left[\begin{array}{rr}
1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
C_{1} e^{4 t} \\
C_{2} e^{-t}
\end{array}\right] \\
& =\left[\begin{array}{l}
C_{1} e^{4 t}+3 C_{2} e^{-t} \\
C_{1} e^{4 t}-2 C_{2} e^{-t}
\end{array}\right]
\end{aligned}
$$

This tells us that

$$
\begin{aligned}
& x=C_{1} e^{4 t}+3 C_{2} e^{-t} \\
& y=C_{1} e^{4 t}-2 C_{2} e^{-t}
\end{aligned}
$$

To complete the exercise, we need to solve the system with the initial conditions $x(0)=0$ and $y(0)=5$. This gives us the system

$$
\begin{aligned}
& x(0)=0=C_{1}+3 C_{2} \\
& y(0)=5=C_{1}-2 C_{2}
\end{aligned}
$$

We row reduce the augmented matrix:

$$
\left[\begin{array}{rr|r}
1 & 3 & 0 \\
1 & -2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & 3 & 0 \\
0 & 1 & -1
\end{array}\right]
$$

We see that $C_{1}=3$ and $C_{2}=-1$. Thus,

$$
\begin{aligned}
& x=3 e^{4 t}-3 e^{-t} \\
& y=3 e^{4 t}+2 e^{-t}
\end{aligned}
$$

## Section 5.1:

(1) We check that the involved dot products are all 0 :

$$
\begin{aligned}
& {\left[\begin{array}{r}
-3 \\
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right] }=(-3)(2)+(1)(4)+(2)(1)=0 \\
& {\left[\begin{array}{r}
-3 \\
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right] }=(-3)(1)+(1)(-1)+(2)(2)=0 \\
& {\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right]=(2)(1)+(4)(-1)+(1)(2)=0 }
\end{aligned}
$$

We conclude that the given set of vectors is orthogonal.
(5) We check that the involved dot products are all 0 :

$$
\begin{aligned}
& {\left[\begin{array}{r}
2 \\
3 \\
-1 \\
4
\end{array}\right] \cdot\left[\begin{array}{r}
-2 \\
1 \\
-1 \\
0
\end{array}\right]=(2)(-2)+(3)(1)+(-1)(-1)+(4)(0)=0} \\
& {\left[\begin{array}{r}
2 \\
3 \\
-1 \\
4
\end{array}\right] \cdot\left[\begin{array}{r}
-4 \\
-6 \\
2 \\
7
\end{array}\right]=(2)(-4)+(3)(-6)+(-1)(2)+(4)(7)=0} \\
& {\left[\begin{array}{r}
-2 \\
1 \\
-1 \\
0
\end{array}\right] \cdot\left[\begin{array}{r}
-4 \\
-6 \\
2 \\
7
\end{array}\right]=(-2)(-4)+(1)(-6)+(-1)(2)+(0)(7)=0}
\end{aligned}
$$

We conclude that the given set of vectors is orthogonal.
(9) We have

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=(1)(1)+(0)(2)+(-1)(1)=0 \\
& \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{3}}=(1)(1)+(0)(-1)+(-1)(1)=0 \\
& \mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{3}}=(1)(1)+(2)(-1)+(1)(1)=0
\end{aligned}
$$

We conclude that the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is an orthogonal set of vectors. By Theorem 5.1, $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is a linearly independent set. By the Fundamental Theorem of Invertible Matrices, any set of 3 linearly independent vectors forms a basis for $\mathbb{R}^{3}$. Thus, $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is a basis for $\mathbb{R}^{3}$.

By Theorem 5.2,

$$
\mathbf{w}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}
$$

where

$$
c_{i}=\frac{\mathbf{w} \cdot \mathbf{v}_{\mathbf{i}}}{\mathbf{v}_{\mathbf{i}} \cdot \mathbf{v}_{\mathbf{i}}}
$$

for $i=1,2,3$.

We calculate

$$
\begin{aligned}
\mathbf{w} \cdot \mathbf{v}_{\mathbf{1}} & =(1)(1)+(1)(0)+(1)(-1)=0 \\
\mathbf{w} \cdot \mathbf{v}_{\mathbf{2}} & =(1)(1)+(1)(2)+(1)(1)=4 \\
\mathbf{w} \cdot \mathbf{v}_{\mathbf{3}} & =(1)(1)+(1)(-1)+(1)(1)=1 \\
\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}} & =(1)(1)+(0)(0)+(-1)(-1)=2 \\
\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}} & =(1)(1)+(2)(2)+(1)(1)=6 \\
\mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{3}} & =(1)(1)+(-1)(-1)+(1)(1)=3
\end{aligned}
$$

So,

$$
\begin{aligned}
c_{1} & =\frac{0}{2}=0 \\
c_{2} & =\frac{4}{6}=\frac{2}{3} \\
c_{3} & =\frac{1}{3}
\end{aligned}
$$

That is,

$$
\mathbf{w}=0 \mathbf{v}_{\mathbf{1}}+\frac{2}{3} \mathbf{v}_{\mathbf{2}}+\frac{1}{3} \mathbf{v}_{\mathbf{3}} .
$$

By definition,

$$
[\mathbf{w}]_{\mathcal{B}}=\left[\begin{array}{c}
0 \\
2 / 3 \\
1 / 3
\end{array}\right] .
$$

(13) Call the given vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$, respectively.

We calculate

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=(1 / 3)(2 / 3)+(2 / 3)(-1 / 3)+(2 / 3)(0)=0 \\
& \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{3}}=(1 / 3)(1)+(2 / 3)(2)+(2 / 3)(-5 / 2)=0 \\
& \mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{3}}=(2 / 3)(1)+(-1 / 3)(2)+(0)(-5 / 2)=0
\end{aligned}
$$

Thus, the given set of vectors is orthogonal.

Now, we calculate

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}=(1 / 3)(1 / 3)+(2 / 3)(2 / 3)+(2 / 3)(2 / 3)=1 \\
& \mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}=(2 / 3)(2 / 3)+(-1 / 3)(-1 / 3)+(0)(0)=5 / 9 \neq 1 \\
& \mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{3}}=(1)(1)+(2)(2)+(-5 / 2)(-5 / 2)=45 / 4 \neq 1
\end{aligned}
$$

Since $\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}} \neq 1$ and $\mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{3}} \neq 1$, the given set is not orthonormal. To create an orthonormal set of vectors from those given, we need to normalize $\mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$. Let $\mathbf{u}_{\mathbf{2}}$ and $\mathbf{u}_{\mathbf{3}}$ be the vectors:

$$
\mathbf{u}_{\mathbf{2}}:=\frac{1}{\left\|\mathbf{v}_{\mathbf{2}}\right\|} \mathbf{v}_{\mathbf{2}}=\frac{1}{\sqrt{5 / 9}} \mathbf{v}_{\mathbf{2}}=\frac{3}{\sqrt{5}} \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
2 / \sqrt{5} \\
-1 / \sqrt{5} \\
0
\end{array}\right]
$$

and

$$
\mathbf{u}_{\mathbf{3}}:=\frac{1}{\left\|\mathbf{v}_{\mathbf{3}}\right\|} \mathbf{v}_{\mathbf{3}}=\frac{1}{\sqrt{45 / 4}} \mathbf{v}_{\mathbf{3}}=\frac{2}{3 \sqrt{5}} \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
2 /(3 \sqrt{5}) \\
4 /(3 \sqrt{5}) \\
-5 /(3 \sqrt{5})
\end{array}\right]
$$

Thus, the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}$ is an orthonormal set of vectors.
(37) (a) Since $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is an orthonormal basis for $\mathbb{R}^{n}$, Theorem 5.3 says that we have the linear combinations

$$
\begin{aligned}
& \mathbf{x}=\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{\mathbf{1}}+\cdots+\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{n}}\right) \mathbf{v}_{\mathbf{n}} \\
& \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{\mathbf{1}}+\cdots+\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{n}}\right) \mathbf{v}_{\mathbf{n}}
\end{aligned}
$$

So,

$$
\mathbf{x} \cdot \mathbf{y}=\left[\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{\mathbf{1}}+\cdots+\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{n}}\right) \mathbf{v}_{\mathbf{n}}\right] \cdot\left[\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{\mathbf{1}}+\cdots+\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{n}}\right) \mathbf{v}_{\mathbf{n}}\right]
$$

By distributivity, a term of $\mathbf{x} \cdot \mathbf{y}$ looks like

$$
\left[\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{j}}\right)\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{i}}\right)\right] \mathbf{v}_{\mathbf{j}} \cdot \mathbf{v}_{\mathbf{i}}
$$

But, the vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are orthonormal, and so if $j \neq i$ then $\mathbf{v}_{\mathbf{j}} \cdot \mathbf{v}_{\mathbf{i}}=0$ and if $j=i$ then $\mathbf{v}_{\mathbf{j}} \cdot \mathbf{v}_{\mathbf{i}}=1$. This shows that

$$
\mathbf{x} \cdot \mathbf{y}=\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{1}}\right)\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{1}}\right)+\cdots+\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{n}}\right)\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{n}}\right) .
$$

(b) By Theorem 5.3,

$$
\begin{aligned}
& \mathbf{x}=\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{\mathbf{1}}+\cdots+\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{n}}\right) \mathbf{v}_{\mathbf{n}} \\
& \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{\mathbf{1}}+\cdots+\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{n}}\right) \mathbf{v}_{\mathbf{n}}
\end{aligned}
$$

That is,

$$
[\mathrm{x}]_{\mathcal{B}}=\left[\begin{array}{c}
\mathrm{x} \cdot \mathrm{v}_{1} \\
\mathrm{x} \cdot \mathrm{v}_{2} \\
\vdots \\
\mathrm{x} \cdot \mathrm{v}_{\mathrm{n}}
\end{array}\right]
$$

and

$$
[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{c}
\mathbf{y} \cdot \mathbf{v}_{\mathbf{1}} \\
\mathbf{y} \cdot \mathbf{v}_{\mathbf{2}} \\
\vdots \\
\mathbf{y} \cdot \mathbf{v}_{\mathbf{n}}
\end{array}\right] .
$$

We see that

$$
[\mathbf{x}]_{\mathcal{B}} \cdot[\mathbf{y}]_{\mathcal{B}}=\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{1}}\right)\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{1}}\right)+\cdots+\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{n}}\right)\left(\mathbf{y} \cdot \mathbf{v}_{\mathbf{n}}\right)=\mathbf{x} \cdot \mathbf{y} .
$$

