Homework Solutions - Week of October 14

Note: You may not be able to complete the exercises from Section 4.4 until the week of Oct. 21.

Section 4.3:

(11) (a) The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cccc}
(1-\lambda) & 0 & 0 & 0 \\
0 & (1-\lambda) & 0 & 0 \\
1 & 1 & (3-\lambda) & 0 \\
-2 & 1 & 2 & (-1-\lambda)
\end{array}\right] \\
& =(1-\lambda)^{2}(3-\lambda)(-1-\lambda)
\end{aligned}
$$

(b) The eigenvalues of A are the roots of $\operatorname{det}(A-\lambda I)=0: \lambda_{1}=1, \lambda_{2}=3$ and $\lambda_{3}=-1$.
(c) To find a basis for E_{1}, we find the null space of $(A-1 I)$:

$$
[A-1 I \mid \mathbf{0}]=\left[\begin{array}{rrrr|r}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mid \\
1 & 1 & 2 & 0 & 0 \\
-2 & 1 & 2 & -2 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{rrrr|r}
1 & 1 & 2 & 0 & 0 \\
0 & 3 & 6 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Thus,

$$
E_{1}=\operatorname{span}\left(\left[\begin{array}{r}
-2 / 3 \\
2 / 3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0
\end{array}\right]\right) .
$$

A basis for E_{1} is

$$
\left\{\left[\begin{array}{r}
-2 / 3 \\
2 / 3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0
\end{array}\right]\right\}
$$

We repeat the above process to find a basis for E_{3}, i.e. we find the null space of $(A-3 I)$:

$$
[A-3 I \mid \mathbf{0}]=\left[\begin{array}{rrrr|r}
-2 & 0 & 0 & 0 & \mid \\
0 & -2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
-2 & 1 & 2 & -4 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{3}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
0 \\
2 \\
1
\end{array}\right]\right)
$$

A basis for E_{3} is

$$
\left\{\left[\begin{array}{l}
0 \\
0 \\
2 \\
1
\end{array}\right]\right\} .
$$

Finally, to find a basis for E_{-1}, i.e. we find the null space of $(A-(-1) I)$:

$$
[A+I \mid \mathbf{0}]=\left[\begin{array}{rrrr|r}
2 & 0 & 0 & 0 & \mid \\
0 & 2 & 0 & 0 & \mid \\
1 & 1 & 4 & 0 & 0 \\
-2 & 1 & 2 & 0 & \mid
\end{array}\right] \longrightarrow\left[\begin{array}{llll|r}
1 & 0 & 0 & 0 & \mid \\
0 & 1 & 0 & 0 & \mid \\
0 & 0 & 1 & 0 & \mid \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{-1}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right) .
$$

A basis for E_{-1} is

$$
\left\{\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

(d) The algebraic and geometric multiplicities for λ_{2} and λ_{3} are 1 . The algebraic and geometric multiplicities for λ_{1} are both 2 .
(12) (a) The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cccc}
(4-\lambda) & 0 & 1 & 0 \\
0 & (4-\lambda) & 1 & 1 \\
0 & 0 & (1-\lambda) & 2 \\
0 & 0 & 3 & (-\lambda)
\end{array}\right] \\
& =(4-\lambda) \operatorname{det}\left[\begin{array}{ccc}
(4-\lambda) & 1 & 1 \\
0 & (1-\lambda) & 2 \\
0 & 3 & (-\lambda)
\end{array}\right] \\
& =(4-\lambda)(4-\lambda)[(1-\lambda)(-\lambda)-6] \\
& =(4-\lambda)^{2}(\lambda-3)(\lambda+2)
\end{aligned}
$$

(b) The eigenvalues of A are the roots of $\operatorname{det}(A-\lambda I)=0: \lambda_{1}=4, \lambda_{2}=3$ and $\lambda_{3}=-2$.
(c) To find a basis for E_{4}, we find the null space of $(A-4 I)$:

$$
[A-4 I \mid \mathbf{0}]=\left[\begin{array}{rrrr|r}
0 & 0 & 1 & 0 & \mid \\
0 & 0 & 1 & 1 & \mid \\
0 & 0 & -3 & 2 & 0 \\
0 & 0 & 3 & -4 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{llll|l}
0 & 0 & 1 & 0 & \mid \\
0 & 0 & 0 & 1 & \mid \\
0 & 0 & 0 & 0 & \mid \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{4}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right)
$$

A basis for E_{4} is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right\} .
$$

We repeat the above process to find a basis for E_{3}, i.e. we find the null space of $(A-3 I)$:

$$
[A-3 I \mid \mathbf{0}]=\left[\begin{array}{rrrr|r}
1 & 0 & 1 & 0 & \mid \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & -2 & 2 & 0 \\
0 & 0 & 3 & -3 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & \mid \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{3}=\operatorname{span}\left(\left[\begin{array}{r}
-1 \\
-2 \\
1 \\
1
\end{array}\right]\right) .
$$

A basis for E_{3} is

$$
\left\{\left[\begin{array}{r}
-1 \\
-2 \\
1 \\
1
\end{array}\right]\right\}
$$

Finally, to find a basis for E_{-2}, i.e. we find the null space of $(A-(-2) I)$:

$$
[A+2 I \mid \mathbf{0}]=\left[\begin{array}{llll|l}
6 & 0 & 1 & 0 & \mid \\
0 & 6 & 1 & 1 & \mid \\
0 & 0 & 3 & 2 & 0 \\
0 & 0 & 3 & 2 & 0 \\
0
\end{array}\right] \longrightarrow\left[\begin{array}{llll|l}
6 & 0 & 1 & 0 & \mid \\
0 & 6 & 1 & 1 & \mid \\
0 & 0 & 3 & 2 & \mid \\
0 & 0 & 0 & 0 & \mid
\end{array}\right]
$$

Thus,

$$
E_{-2}=\operatorname{span}\left(\left[\begin{array}{r}
1 / 9 \\
-1 / 18 \\
-2 / 3 \\
1
\end{array}\right]\right) .
$$

A basis for E_{-2} is

$$
\left\{\left[\begin{array}{r}
1 / 9 \\
-1 / 18 \\
-2 / 3 \\
1
\end{array}\right]\right\}
$$

(d) The algebraic and geometric multiplicities for λ_{2} and λ_{3} are 1. The algebraic and geometric multiplicities for λ_{1} are both 2 .
(17) We first observe that $\mathbf{x}=\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}+2 \mathbf{v}_{\mathbf{3}}$. So,

$$
\begin{aligned}
A^{20} \mathbf{x} & =\left(-\frac{1}{3}\right)^{20} \mathbf{v}_{\mathbf{1}}-\left(\frac{1}{3}\right)^{20} \mathbf{v}_{\mathbf{2}}+2(1)^{20} \mathbf{v}_{\mathbf{3}} \\
& =\left[\begin{array}{c}
2 \\
2-(1 / 3)^{20} \\
2
\end{array}\right]
\end{aligned}
$$

(18) Since $\mathbf{x}=\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}+2 \mathbf{v}_{\mathbf{3}}$, we have

$$
A^{k} \mathbf{x}=\left(-\frac{1}{3}\right)^{k} \mathbf{v}_{\mathbf{1}}-\left(\frac{1}{3}\right)^{k} \mathbf{v}_{\mathbf{2}}+2(1)^{k} \mathbf{v}_{\mathbf{3}}
$$

Thus, as $k \rightarrow \infty$, we have

$$
A^{k} \mathbf{x} \rightarrow 2 \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]
$$

(19) (a) By Theorem 3.4 and Theorem 4.10,

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}(A-\lambda I)^{T} \\
& =\operatorname{det}\left[A^{T}-(\lambda I)^{T}\right] \\
& =\operatorname{det}\left(A^{T}-\lambda I^{T}\right) \\
& =\operatorname{det}\left(A^{T}-\lambda I\right)
\end{aligned}
$$

Since the roots of the characteristic equation give the eigenvalues of a matrix, A and A^{T} have the same eigenvalues.
(b) Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Then

$$
\operatorname{det}(A-\lambda I)=-\lambda(1-\lambda)
$$

It's easy to verify that the eigenspace E_{0} of A has basis

$$
\left\{\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right\}
$$

Now

$$
A^{T}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

By part (a), A^{T} also has the eigenvalue $\lambda=0$. One can check that the eigenspace E_{0} of A^{T} has basis

$$
\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

We see that even though A and A^{T} have the same eigenvalue $\lambda=0$, the associated eigenspaces for the two matrices are not the same.
(21) Suppose $A^{2}=A$. Let λ be an eigenvalue of A. Then there exists a non-zero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$. Thus,

$$
A \mathbf{x}=\lambda \mathbf{x} \Longrightarrow A \mathbf{x}=A^{2} \mathbf{x}=\lambda A \mathbf{x} \Longrightarrow \lambda=0 \text { or } \lambda=1
$$

Thus, the only possible values for the eigenvalues of A are $\lambda=0$ or $\lambda=1$.
(24) (a) Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. One can check that the eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2}=0$. Also, the eigenvalues of B are $\beta_{1}=0$ and $\beta_{2}=1$.

We have

$$
A+B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The only eigenvalue of $A+B$ is $\lambda=1$.
Observe that $\lambda_{2}+\beta_{1}=0+0=0$ is not an eigenvalue of $A+B$.
(b) Let A and B be as in part (a). Then

$$
A B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

The only eigenvalue of $A B$ is $\lambda=0$.
Observe that $\lambda_{1} \beta_{2}=(1)(1)=1$ is not an eigenvalue of $A B$.
(c) We are told that $A \mathbf{x}=\lambda \mathbf{x}$ and $B \mathbf{x}=\mu \mathbf{x}$ for some non-zero vector \mathbf{x}. Thus,

$$
(A+B) \mathbf{x}=A \mathbf{x}+B \mathbf{x}=\lambda \mathbf{x}+\mu \mathbf{x}=(\lambda+\mu) \mathbf{x}
$$

which shows that $\lambda+\mu$ is an an eigenvalue of $A+B$.
Similarly,

$$
(A B) \mathbf{x}=A(B \mathbf{x})=A(\mu \mathbf{x})=\mu(A \mathbf{x})=\mu(\lambda \mathbf{x})=\lambda \mu \mathbf{x}
$$

which shows that $\lambda \mu$ is an eigenvalue of $A B$.

Section 4.4:

(1) We have

$$
\operatorname{det}(A-\lambda I)=(4-\lambda)(1-\lambda)-3=\lambda^{2}-5 \lambda+1 \neq(1-\lambda)^{2}=\operatorname{det}(B-\lambda I)
$$

That is, A and B have different characteristic polynomials. By Theorem 4.22, A and B are not similar.
(2) We have

$$
\operatorname{det}(A-\lambda I)=(3-\lambda)(7-\lambda)-5=\lambda^{2}-10 \lambda+16
$$

which does not equal

$$
\operatorname{det}(B-\lambda I)=(2-\lambda)(6-\lambda)+4=\lambda^{2}-8 \lambda+16=\operatorname{det}(B-\lambda I) .
$$

That is, A and B have different characteristic polynomials. By Theorem 4.22, A and B are not similar.
(5) The eigenvalues of A are $\lambda_{1}=4$ and $\lambda_{2}=3$.
E_{4} has basis

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

E_{3} has basis

$$
\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}
$$

(6) A has eigenvalues $\lambda_{1}=2, \lambda_{2}=0$, and $\lambda_{3}=-1$.
E_{2} has basis

$$
\left\{\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]\right\}
$$

E_{0} has basis

$$
\left\{\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]\right\}
$$

E_{-1} has basis

$$
\left\{\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]\right\}
$$

(7) A has eigenvalues $\lambda_{1}=6$ and $\lambda_{2}=-2$.
E_{6} has basis

$$
\left\{\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right]\right\}
$$

E_{-2} has basis

$$
\left\{\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]\right\}
$$

(9) We first find the charateristic polynomial of A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
(-3-\lambda) & 4 \\
-1 & (1-\lambda)
\end{array}\right]=(-3-\lambda)(1-\lambda)+4=\lambda^{2}+2 \lambda+1
$$

The only root of $\operatorname{det}(A-\lambda I)=0$ is $\lambda=-1$, and so the only eigenvalue of A is $\lambda=-1$.

To find E_{-1} we solve the system $(A-(-1) I) \mathbf{x}=\mathbf{0}$:

$$
[(A+I) \mid \mathbf{0}]=\left[\begin{array}{ll|l}
-2 & 4 & 0 \\
-1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Solving the system, we see that

$$
E_{-1}=\operatorname{span}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right) .
$$

So, a basis for E_{-1} is

$$
\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

We see that the algebraic multiplicity of $\lambda=-1$ is 2 , yet the geometric multiplicity of $\lambda=-1$ is $\operatorname{dim}\left(E_{-1}\right)=1$. Thus, A is not diagonalizable (by Theorem 4.27).
(12) We begin by finding the characteristic polynomial of A. We have

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{ccc}
(1-\lambda) & 0 & 0 \\
2 & (2-\lambda) & 1 \\
3 & 0 & (1-\lambda)
\end{array}\right] \\
& =(1-\lambda) \operatorname{det}\left[\begin{array}{cc}
(2-\lambda) & 1 \\
0 & (1-\lambda)
\end{array}\right] \\
& =(1-\lambda)^{2}(2-\lambda)
\end{aligned}
$$

The roots of $\operatorname{det}(A-\lambda I)=0$ are the eigenvalues of A. Thus, A has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2$.

To find E_{1} we solve the system $(A-1 I) \mathbf{x}=\mathbf{0}$:

$$
[(A-I) \mid \mathbf{0}]=\left[\begin{array}{lll|l}
0 & 0 & 0 & \mid \\
2 & 1 & 1 & 0 \\
3 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & \mid \\
0 & 1 & 1 & \mid \\
0 & 0 & 0 & 0 \\
0
\end{array}\right]
$$

Solving the system, we see that

$$
E_{1}=\operatorname{span}\left(\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]\right)
$$

So, a basis for E_{1} is

$$
\left\{\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

We see that the algebraic multiplicity of $\lambda_{1}=1$ is 2 , yet the geometric multiplicity of $\lambda_{1}=1$ is $\operatorname{dim}\left(E_{1}\right)=1$. Thus, A is not diagonalizable (by Theorem 4.27).
(15) We begin by finding the characteristic polynomial of A. We have

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cccc}
(2-\lambda) & 0 & 0 & 4 \\
0 & (2-\lambda) & 0 & 0 \\
0 & 0 & (-2-\lambda) & 0 \\
0 & 0 & 0 & (-2-\lambda)
\end{array}\right] \\
& =(2-\lambda) \operatorname{det}\left[\begin{array}{ccc}
(2-\lambda) & 0 & 0 \\
0 & (-2-\lambda) & 0 \\
0 & 0 & (-2-\lambda)
\end{array}\right] \\
& =(2-\lambda)^{2}(-2-\lambda)^{2}
\end{aligned}
$$

The roots of $\operatorname{det}(A-\lambda I)=0$ are the eigenvalues of A. Thus, A has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=-2$.

To find E_{2} we solve the system $(A-2 I) \mathbf{x}=\mathbf{0}$:

$$
[(A-2 I) \mid \mathbf{0}]=\left[\begin{array}{rrrr|r}
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & \mid \\
0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll|l}
0 & 0 & 1 & 0 & \mid \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solving the system, we see that

$$
E_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right)
$$

So, a basis for E_{2} is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right\} .
$$

To find E_{-2} we solve the system $(A-(-2) I) \mathbf{x}=\mathbf{0}$:

$$
[(A+2 I) \mid \mathbf{0}]=\left[\begin{array}{cccc|c}
4 & 0 & 0 & 4 & \mid \\
0 & 4 & 0 & 0 & \mid \\
0 & 0 & 0 & 0 & \mid \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & \mid \\
0 & 1 & 0 & 0 & \mid \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solving the system, we see that

$$
E_{-2}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]\right) .
$$

So, a basis for E_{-2} is

$$
\left\{\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Since the algebraic multiplicities equal the geometric multiplicities for each of the eigenvalues of A, we conclude that A is diagonalizable. That is, if we let

$$
D=\left[\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

and

$$
P=\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

then $P^{-1} A P=D$.
(17) Let $A=\left[\begin{array}{rr}-1 & 6 \\ 1 & 0\end{array}\right]$. We begin by finding the characteristic polynomial of A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
(-1-\lambda) & 6 \\
1 & (-\lambda)
\end{array}\right]=(-1-\lambda)(-\lambda)-6=(\lambda+3)(\lambda-2) .
$$

We see that the eigenvalues of A are $\lambda_{1}=-3$ and $\lambda_{2}=2$.
The eigenspace E_{-3} is the null space of $A+3 I$:

$$
[A+3 I \mid \mathbf{0}]=\left[\begin{array}{ll|l}
2 & 6 & 0 \\
1 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that

$$
E_{-3}=\operatorname{span}\left(\left[\begin{array}{r}
-3 \\
1
\end{array}\right]\right) .
$$

Thus, E_{-3} has basis

$$
\left\{\left[\begin{array}{r}
-3 \\
1
\end{array}\right]\right\} .
$$

The eigenspace E_{2} is the null space of $A-2 I$:

$$
[A-2 I \mid \mathbf{0}]=\left[\begin{array}{rr|r}
-3 & 6 & 0 \\
1 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that

$$
E_{2}=\operatorname{span}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)
$$

Thus, E_{2} has basis

$$
\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} .
$$

We conclude that A is diagonalizable. That is, $A=P D P^{-1}$ where

$$
P=\left[\begin{array}{rr}
-3 & 2 \\
1 & 1
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{rr}
-3 & 0 \\
0 & 2
\end{array}\right]
$$

Thus,

$$
\begin{aligned}
A^{10} & =\left(P D P^{-1}\right)^{10}=P D^{10} P^{-1} \\
& =\left[\begin{array}{rr}
-3 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
(-3)^{10} & 0 \\
0 & 2^{10}
\end{array}\right]\left[\begin{array}{rr}
-1 / 5 & 2 / 5 \\
1 / 5 & 3 / 5
\end{array}\right] \\
& =\left[\begin{array}{rr}
-3 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
59049 & 0 \\
0 & 1024
\end{array}\right]\left[\begin{array}{rr}
-1 / 5 & 2 / 5 \\
1 / 5 & 3 / 5
\end{array}\right] \\
& =\left[\begin{array}{rr}
35839 & -69630 \\
-11605 & 24234
\end{array}\right]
\end{aligned}
$$

(18) Let $A=\left[\begin{array}{rr}4 & -3 \\ -1 & 2\end{array}\right]$. We begin by finding the characteristic polynomial of A :
$\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}(4-\lambda) & -3 \\ -1 & (2-\lambda)\end{array}\right]=(4-\lambda)(2-\lambda)-3=(\lambda-5)(\lambda-1)$.
We see that the eigenvalues of A are $\lambda_{1}=5$ and $\lambda_{2}=1$.
The eigenspace E_{5} is the null space of $A-5 I$:

$$
[A-5 I \mid \mathbf{0}]=\left[\begin{array}{ll|l}
-1 & -3 & 0 \\
-1 & -3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that

$$
E_{5}=\operatorname{span}\left(\left[\begin{array}{r}
-3 \\
1
\end{array}\right]\right)
$$

Thus, E_{5} has basis

$$
\left\{\left[\begin{array}{r}
-3 \\
1
\end{array}\right]\right\}
$$

The eigenspace E_{1} is the null space of $A-1 I$:

$$
[A-I \mid \mathbf{0}]=\left[\begin{array}{rr|r}
3 & -3 & 0 \\
-1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

We see that

$$
E_{1}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
$$

Thus, E_{1} has basis

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

We conclude that A is diagonalizable. That is, $A=P D P^{-1}$ where

$$
P=\left[\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right]
$$

Since $A=P D P^{-1}$, we know that $A^{-1}=\left[P D P^{-1}\right]^{-1}=P D^{-1} P^{-1}$. So, $A^{-6}=$ $\left(A^{-1}\right)^{6}=P\left(D^{-1}\right)^{6} P^{-1}$.

Thus,

$$
\begin{aligned}
A^{-6} & =\left(P D P^{-1}\right)^{-6}=P\left(D^{-1}\right)^{6} P^{-1} \\
& =\left[\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right]\left(\left[\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{rr}
-1 / 4 & 1 / 4 \\
1 / 4 & 3 / 4
\end{array}\right] \\
& =\left[\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
1 / 5 & 0 \\
0 & 1
\end{array}\right]\right)^{6}\left[\begin{array}{rr}
-1 / 4 & 1 / 4 \\
1 / 4 & 3 / 4
\end{array}\right] \\
& =\left[\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
(1 / 5)^{6} & 0 \\
0 & 1^{6}
\end{array}\right]\left[\begin{array}{rr}
-1 / 4 & 1 / 4 \\
1 / 4 & 3 / 4
\end{array}\right] \\
& =\left[\begin{array}{rr}
-3 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / 15625 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 / 4 & 1 / 4 \\
1 / 4 & 3 / 4
\end{array}\right] \\
& =\left[\begin{array}{rr}
3907 / 15625 & 11718 / 15265 \\
3906 / 15625 & 11719 / 15265
\end{array}\right]
\end{aligned}
$$

(21) Since the given matrix A is triangular, its eigenvalues are the diagonal entries: $\lambda_{1}=1$ and $\lambda_{2}=-1$.

To find E_{1} we solve the system $(A-1 I) \mathbf{x}=\mathbf{0}$:

$$
[(A-I) \mid \mathbf{0}]=\left[\begin{array}{rrr|r}
0 & 1 & 1 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Solving the system, we see that

$$
E_{1}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)
$$

So, a basis for E_{1} is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} .
$$

To find E_{-1} we solve the system $(A-(-1) I) \mathbf{x}=\mathbf{0}$:

$$
[(A+I) \mid \mathbf{0}]=\left[\begin{array}{ccc|c}
2 & 1 & 1 & \mid \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Solving the system, we see that

$$
E_{-1}=\operatorname{span}\left(\left[\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right]\right) .
$$

So, a basis for E_{-1} is

$$
\left\{\left[\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right]\right\}
$$

Since the algebraic multiplicities equal the geometric multiplicities for each of the eigenvalues of A, we conclude that A is diagonalizable. That is, if we let

$$
D=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

and

$$
P=\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

then $P^{-1} A P=D$. So,

$$
\begin{aligned}
A^{2002} & =P D^{2002} P^{-1} \\
& =P\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]^{2002} P^{-1} \\
& =P\left[\begin{array}{rrr}
1^{2002} & 0 & 0 \\
0 & 1^{2002} & 0 \\
0 & 0 & 1^{2002}
\end{array}\right] P^{-1} \\
& =P I P^{-1} \\
& =P P^{-1} \\
& =I \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(34) Suppose A and B are invertible matrices. Let $P=B^{-1}$. Then

$$
P^{-1}(A B) P=\left(B^{-1}\right)^{-1}(A B) B^{-1}=(B A)\left(B B^{-1}\right)=B A I=B A .
$$

So, by definition, $A B$ and $B A$ are similar matrices.
(37) We first concentrate on the matrix A. We have
$\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}(5-\lambda) & -3 \\ 4 & (-2-\lambda)\end{array}\right]=(5-\lambda)(-2-\lambda)+12=(\lambda-2)(\lambda-1)$.
The eigenvalues of A are $\lambda_{1}=2$ and $\lambda_{2}=1$. Since each eigenvalue has both algebraic multiplicity 1 , each eigenvalue has geometric multiplicity 1 (by Theorem 4.26). We conclude that A is diagonalizable. So, A is similar to

$$
D=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

We now repeat this argument on B. We have
$\operatorname{det}(B-\lambda I)=\operatorname{det}\left[\begin{array}{cc}(-1-\lambda) & 1 \\ -6 & (4-\lambda)\end{array}\right]=(-1-\lambda)(4-\lambda)+6=(\lambda-2)(\lambda-1)$.
The eigenvalues of B are $\lambda_{1}=2$ and $\lambda_{2}=1$. As was the case with A, we have that B is similar to

$$
D=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

Since A and B are similar to the same diagonal matrix D, we must have that A and B are similar (by Theorem 4.21).

To find the desired matrix P we need to find the eigenspaces for A and B. Using the techniques from this section, one finds that A has eigenspaces

$$
E_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
$$

and

$$
E_{1}=\operatorname{span}\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)
$$

So, $A=S D S^{-1}$ where $S=\left[\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right]$.
Similarly, B has eigenspaces

$$
E_{2}^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right)
$$

and

$$
E_{1}^{\prime}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) .
$$

So, $B=Q D Q^{-1}$ where $Q=\left[\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right]$.
Rearranging the equation $A=S D S^{-1}$ to isolate for D we see that

$$
D=S^{-1} A S
$$

Substituting this into the equation $B=Q D Q^{-1}$, we have

$$
B=Q D Q^{-1}=Q S^{-1} A S Q^{-1} .
$$

Now let $P=S Q^{-1}$. This yields

$$
B=P^{-1} A P
$$

We conclude that the desired matrix P is

$$
\begin{aligned}
P=S Q^{-1} & =\left[\begin{array}{ll}
1 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{rr}
-2 & 1 \\
3 & -1
\end{array}\right] \\
& =\left[\begin{array}{rr}
7 & -2 \\
10 & -3
\end{array}\right]
\end{aligned}
$$

(41) Let A be an $n \times n$ diagonalizable matrix. By Theorem 4.27, we know that the algebraic and geometric multiplicities for each eigenvalue of A are equal.

We want to show that A^{T} is also diagonalizable. This will follow from a series of observations.

By Section 4.3, exercise 19, we know that A and A^{T} have the same characteristic polynomial. This shows that A and A^{T} have the same eigenvalues with the same algebraic multiplicities. Let λ be an eigenvalue of A^{T} (and hence A). We need to show that the algebraic multiplicity of λ is equal to its geometric multiplicity. We have two eigenspaces associated to λ; one for A and one for A^{T}. Let E_{λ} denote the null space of $A-\lambda I$ and E_{λ}^{\prime} denote the null space of $A^{T}-\lambda I$.

Observe that $(A-\lambda I)^{T}=A^{T}-\lambda I$. Thus, by Theorem 3.25,

$$
\operatorname{Rank}\left(A^{T}-\lambda I\right)=\operatorname{Rank}(A-\lambda I)^{T}=\operatorname{Rank}(A-\lambda I) .
$$

So, by the Rank Theorem,

$$
\begin{aligned}
n & =\operatorname{Rank}\left(A^{T}-\lambda I\right)+\operatorname{Nullity}\left(A^{T}-\lambda I\right) \\
n & =\operatorname{Rank}(A-\lambda I)+\operatorname{Nullity}(A-\lambda I)
\end{aligned}
$$

We conclude that $\operatorname{Nullity}\left(A^{T}-\lambda I\right)=\operatorname{Nullity}(A-\lambda I)$. That is, $\operatorname{dim}\left(E_{\lambda}\right)=$ $\operatorname{dim}\left(E_{\lambda}^{\prime}\right)$. This shows that the geometric multiplicities are equal for each shared
eigenvalue of A and A^{T}. Thus, since the multiplicities are equal for A, the algebraic and geometric multiplicities for each eigenvalue of A^{T} must be equal. This shows that A^{T} is diagonalizable.

