Homework Solutions - Week of October 7

Note: The exercises from Section 4.3 should be completed the week of October 14.

Section 4.2:

(47) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=(3)(-2)=-6$
(48) $\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A) \operatorname{det}(A)=(3)(3)=9$
(49) $\operatorname{det}\left(B^{-1} A\right)=\operatorname{det}\left(B^{-1}\right) \operatorname{det}(A)=\frac{1}{\operatorname{det}(B)} \operatorname{det}(A)=-\frac{1}{2}(3)=-\frac{3}{2}$
(51) $\operatorname{det}\left(3 B^{T}\right)=3^{n} \operatorname{det}\left(B^{T}\right)=3^{n} \operatorname{det}(B)=3^{n}(-2)=(-2) 3^{n}$
(53) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B A)$
(55) If A is idempotent then, by definition, $A^{2}=A$. Thus

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A) \operatorname{det}(A) .
$$

Thus,

$$
\operatorname{det}(A)-\operatorname{det}(A) \operatorname{det}(A)=0 \Longrightarrow \operatorname{det}(A)[1-\operatorname{det}(A)]=0 .
$$

We conclude that $\operatorname{det}(A)=0$ or $\operatorname{det}(A)=1$.
(59) The given system is equivalent to $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

We have

$$
A_{1}(\mathbf{b})=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right], A_{2}(\mathbf{b})=\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right], A_{3}(\mathbf{b})=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

We find

$$
\operatorname{det}\left(A_{1}(\mathbf{b})\right)=-2, \quad \operatorname{det}\left(A_{2}(\mathbf{b})\right)=0, \operatorname{det}\left(A_{3}(\mathbf{b})\right)=2, \operatorname{det}(A)=2 .
$$

So, by Cramer's Rule,

$$
\begin{aligned}
& x=\frac{\operatorname{det}\left(A_{1}(\mathbf{b})\right)}{\operatorname{det}(A)}=-1 \\
& y=\frac{\operatorname{det}\left(A_{2}(\mathbf{b})\right)}{\operatorname{det}(A)}=0 \\
& z=\frac{\operatorname{det}\left(A_{3}(\mathbf{b})\right)}{\operatorname{det}(A)}=1
\end{aligned}
$$

This gives the unique solution,

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] .
$$

(63) We first calculate $\operatorname{det}(A)=2$.

Using the notation from class and the text book, we let $C_{i j}$ be the (i, j)-cofactor of A. We find

$$
\begin{gathered}
C_{11}=1, \quad C_{12}=0, \quad C_{13}=0 \\
C_{21}=-1, \quad C_{22}=2, \quad C_{23}=0 \\
C_{31}=-2, \quad C_{32}=-2, \quad C_{33}=2
\end{gathered}
$$

Let

$$
C=\left[C_{i j}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 2 & 0 \\
-2 & -2 & 2
\end{array}\right]
$$

Then

$$
\operatorname{adj} A=C^{T}=\left[\begin{array}{rrr}
1 & -1 & -2 \\
0 & 2 & -2 \\
0 & 0 & 2
\end{array}\right]
$$

Therefore,

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \text { adj } A=\frac{1}{2}\left[\begin{array}{rrr}
1 & -1 & -2 \\
0 & 2 & -2 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{rrr}
1 / 2 & -1 / 2 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] .
$$

Section 4.3:

(1) (a) The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cc}
(1-\lambda) & 3 \\
-2 & (6-\lambda)
\end{array}\right] \\
& =(1-\lambda)(6-\lambda)+6 \\
& =\lambda^{2}-7 \lambda+12 \\
& =(\lambda-4)(\lambda-3)
\end{aligned}
$$

(b) The eigenvalues of A are the roots of $\operatorname{det}(A-\lambda I)=0: \lambda_{1}=4$ and $\lambda_{2}=3$.
(c) To find a basis for E_{4}, we find the null space of $(A-4 I)$:

$$
[A-4 I \mid \mathbf{0}]=\left[\begin{array}{ll|l}
-3 & 3 & 0 \\
-2 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{4}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
$$

A basis for E_{4} is

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} .
$$

We repeat the above process to find a basis for E_{3}, i.e. we find the null space of $(A-3 I)$:

$$
[A-3 I \mid \mathbf{0}]=\left[\begin{array}{ll|l}
-2 & 3 & \mid \\
-2 & 3 & \mid
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
2 & -3 & \mid \\
0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{3}=\operatorname{span}\left(\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right]\right)
$$

A basis for E_{3} is

$$
\left\{\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right\}
$$

(d) The algebraic multiplicity for $\lambda_{1}=4$ is 1 , and the geometric multiplicity for $\lambda_{1}=4$ is 1 . Similarly, the algebraic multiplicity for $\lambda_{2}=3$ is 1 , and the geometric multiplicity for $\lambda_{2}=3$ is 1 .
(2) (a) The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{cc}
(2-\lambda) & 1 \\
-1 & (-\lambda)
\end{array}\right] \\
& =(-\lambda)(2-\lambda)+1 \\
& =\lambda^{2}-2 \lambda+1 \\
& =(\lambda-1)^{2}
\end{aligned}
$$

(b) The eigenvalues of A are the roots of $\operatorname{det}(A-\lambda I)=0$. So, the only eigenvalue of A is $\lambda_{1}=1$.
(c) To find a basis for E_{1}, we find the null space of $(A-1 I)$:

$$
[A-1 I \mid \mathbf{0}]=\left[\begin{array}{rr|r}
1 & 1 & 0 \\
-1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 1 & \mid \\
0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{1}=\operatorname{span}\left(\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right) .
$$

A basis for E_{1} is

$$
\left\{\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right\}
$$

(d) The algebraic multiplicity for $\lambda_{1}=1$ is 2 , and the geometric multiplicity for $\lambda_{1}=1$ is 1 .
(5) (a) The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{ccc}
(1-\lambda) & 2 & 0 \\
-1 & (-1-\lambda) & 1 \\
0 & 1 & (1-\lambda)
\end{array}\right] \\
& =(1-\lambda) \operatorname{det}\left[\begin{array}{cc}
(-1-\lambda) & 1 \\
1 & (1-\lambda)
\end{array}\right]-2 \operatorname{det}\left[\begin{array}{cc}
-1 & 1 \\
0 & (1-\lambda)
\end{array}\right] \\
& =(1-\lambda)[(-1-\lambda)(1-\lambda)-1]-2(-1)(1-\lambda) \\
& =-\lambda^{3}+\lambda^{2} \\
& =-\lambda^{2}(\lambda-1)
\end{aligned}
$$

(b) The eigenvalues of A are the roots of $\operatorname{det}(A-\lambda I)=0: \lambda_{1}=0$ and $\lambda_{2}=1$.
(c) To find a basis for E_{0}, we find the null space of $(A-0 I)$:

$$
[A-0 I \mid \mathbf{0}]=\left[\begin{array}{rrr|r}
1 & 2 & 0 & 0 \\
-1 & -1 & 1 & \mid \\
0 & 1 & 1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll|r}
1 & 2 & 0 & 0 \\
0 & 1 & 1 & \mid \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{0}=\operatorname{span}\left(\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]\right)
$$

A basis for E_{0} is

$$
\left\{\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]\right\}
$$

We repeat the above process to find a basis for E_{1}, i.e. we find the null space of $(A-1 I)$:

$$
[A-1 I \mid \mathbf{0}]=\left[\begin{array}{rrr|r}
0 & 2 & 0 & \mid r \\
-1 & -2 & 1 & \mid \\
0 & 1 & 0 & 0 \\
\hline
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 2 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{1}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)
$$

A basis for E_{1} is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

(d) The algebraic multiplicity for $\lambda_{1}=0$ is 2 , and the geometric multiplicity for $\lambda_{1}=0$ is 1 . The algebraic multiplicity for $\lambda_{2}=1$ is 1 , and the geometric multiplicity for $\lambda_{2}=1$ is 1 .
(8) (a) The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{ccc}
(1-\lambda) & -1 & -1 \\
0 & (2-\lambda) & 0 \\
-1 & -1 & (1-\lambda)
\end{array}\right] \\
& =(2-\lambda) \operatorname{det}\left[\begin{array}{cc}
(1-\lambda) & -1 \\
-1 & (1-\lambda)
\end{array}\right] \\
& =(2-\lambda)[(1-\lambda)(1-\lambda)-1] \\
& =(2-\lambda)\left(\lambda^{2}-2 \lambda\right) \\
& =-\lambda(\lambda-2)^{2}
\end{aligned}
$$

(b) The eigenvalues of A are the roots of $\operatorname{det}(A-\lambda I)=0: \lambda_{1}=0$ and $\lambda_{2}=2$.
(c) To find a basis for E_{0}, we find the null space of $(A-0 I)$:

$$
[A-0 I \mid 0]=\left[\begin{array}{rrr|r}
1 & -1 & -1 & 0 \\
0 & 2 & 0 & 0 \\
-1 & -1 & 1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & -1 & -1 & 0 \\
0 & 1 & 0 & \mid \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{0}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)
$$

A basis for E_{0} is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

We repeat the above process to find a basis for E_{2}, i.e. we find the null space of $(A-2 I)$:

$$
[A-2 I \mid \mathbf{0}]=\left[\begin{array}{rrr|r}
-1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & \mid \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus,

$$
E_{2}=\operatorname{span}\left(\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]\right)
$$

A basis for E_{2} is

$$
\left\{\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

(d) The algebraic multiplicity for $\lambda_{1}=0$ is 1 , and the geometric multiplicity for $\lambda_{1}=0$ is 1 . The algebraic multiplicity for $\lambda_{2}=2$ is 2 , and the geometric multiplicity for $\lambda_{2}=2$ is 2 .

