Homework Solutions - Week of September 30

Note: The exercises from Section 4.2 should be completed the week of October 7.

Section 4.1:

(5) We have

$$
A \mathbf{v}=\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & 1 & -2 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
6 \\
-3 \\
3
\end{array}\right]=3 \mathbf{v}
$$

So, by definition, \mathbf{v} is an eigenvector of A with eigenvalue $\lambda=3$.
(6) We have

$$
A \mathbf{v}=\left[\begin{array}{rrr}
0 & 1 & -1 \\
1 & 1 & 1 \\
1 & 2 & 0
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=0 \mathbf{v}
$$

So, by definition, \mathbf{v} is an eigenvector of A with eigenvalue $\lambda=0$.
(9) We want to find $\mathbf{x} \neq \mathbf{0}$ such that $A \mathbf{x}=1 \mathbf{x}$. Equivalently, we want to find $\mathbf{x} \neq \mathbf{0}$ such that

$$
A \mathrm{x}-1 \mathbf{x}=(A-1 I) \mathbf{x}=\mathbf{0}
$$

So, we need to find the null space of $A-1 I$. We form the associated augmented matrix and row reduce:

$$
[A-I \mid \mathbf{0}]=\left[\begin{array}{ll|l}
-1 & 4 & 0 \\
-1 & 4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Solving the system, we have

$$
\operatorname{null}(A-1 I)=\left\{t\left[\begin{array}{l}
4 \\
1
\end{array}\right]: t \in \mathbb{R}\right\} .
$$

Any non-zero multiple of $\mathbf{u}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue $\lambda=1$. In particular,

$$
A \mathbf{u}=1 \mathbf{u}
$$

which shows that \mathbf{u} is an eigenvector of A with eigenvalue 1 .
(10) We want to find $\mathbf{x} \neq \mathbf{0}$ such that $A \mathbf{x}=4 \mathbf{x}$. Equivalently, we want to find $\mathbf{x} \neq \mathbf{0}$ such that

$$
A \mathbf{x}-4 \mathbf{x}=(A-4 I) \mathbf{x}=\mathbf{0}
$$

So, we need to find the null space of $A-4 I$. We form the associated augmented matrix and row reduce:

$$
[A-4 I \mid \mathbf{0}]=\left[\begin{array}{ll|l}
-4 & 4 & 0 \\
-1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Solving the system, we have

$$
\operatorname{null}(A-4 I)=\left\{t\left[\begin{array}{l}
1 \\
1
\end{array}\right]: t \in \mathbb{R}\right\} .
$$

Any non-zero multiple of $\mathbf{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue $\lambda=4$. In particular,

$$
A \mathbf{u}=4 \mathbf{u}
$$

which shows that \mathbf{u} is an eigenvector of A with eigenvalue 4 .
(11) We want to find $\mathbf{x} \neq \mathbf{0}$ such that $A \mathbf{x}=-1 \mathbf{x}$. Equivalently, we want to find $\mathbf{x} \neq \mathbf{0}$ such that

$$
A \mathbf{x}-(-1) \mathbf{x}=(A+I) \mathbf{x}=\mathbf{0}
$$

So, we need to find the null space of $A+I$. We form the associated augmented matrix and row reduce:

$$
[A+I \mid \mathbf{0}]=\left[\begin{array}{rrr|r}
2 & 0 & 2 & \mid \\
-1 & 2 & 1 & \mid \\
2 & 0 & 2 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll|r}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Solving the system, we have

$$
\operatorname{null}(A+I)=\left\{t\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]: t \in \mathbb{R}\right\}
$$

Any non-zero multiple of $\mathbf{u}=\left[\begin{array}{r}-1 \\ -1 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue $\lambda=-1$. In particular,

$$
A \mathbf{u}=-1 \mathbf{u}
$$

which shows that \mathbf{u} is an eigenvector of A with eigenvalue -1 .
(13) $A=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$ is the matrix of a reflection F in the y-axis. The only vectors that F maps parallel to themselves are vectors of the form $\left[\begin{array}{l}0 \\ s\end{array}\right]$ and $\left[\begin{array}{l}t \\ 0\end{array}\right]$. Vectors of the form $\mathbf{u}=\left[\begin{array}{l}0 \\ s\end{array}\right]$ are transformed to $F(\mathbf{u})=\left[\begin{array}{l}0 \\ s\end{array}\right]=1 \mathbf{u}$ (i.e. these are eigenvectors with eigenvalue 1). Vectors of the form $\mathbf{v}=\left[\begin{array}{l}t \\ 0\end{array}\right]$ are transformed to $F(\mathbf{v})=\left[\begin{array}{r}-t \\ 0\end{array}\right]=-1 \mathbf{v}$ (i.e. these are eigenvectors with eigenvalue -1). Therefore, we have the eigenspaces

$$
E_{1}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

and

$$
E_{-1}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) .
$$

(17) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ is the matrix of the transformation T which stretches by a factor of 2 horizontally and a factor of 3 vertically. The only vectors that T maps parallel to themselves are vectors of the form $\left[\begin{array}{l}s \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ t\end{array}\right]$. Vectors of the form $\mathbf{u}=\left[\begin{array}{l}s \\ 0\end{array}\right]$ are transformed to $T(\mathbf{u})=\left[\begin{array}{c}2 s \\ 0\end{array}\right]=2 \mathbf{u}$ (i.e. these are eigenvectors with eigenvalue 2). Vectors of the form $\mathbf{v}=\left[\begin{array}{l}0 \\ t\end{array}\right]$ are transformed to
$T(\mathbf{v})=\left[\begin{array}{c}0 \\ 3 t\end{array}\right]=3 \mathbf{v}$ (i.e. these are eigenvectors with eigenvalue 3). Therefore, we have the eigenspaces

$$
E_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

and

$$
E_{3}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

(25) We first find the eigenvalues for A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
(2-\lambda) & 5 \\
0 & (2-\lambda)
\end{array}\right]=(2-\lambda)^{2} .
$$

The eigenvalues are the roots of $(2-\lambda)^{2}=0$. So, the only eigenvalue of A is $\lambda=2$.

To find the eigenspace E_{2}, we need to find the null space of $A-2 I$. We row reduce the associated augmented matrix:

$$
[A-2 I \mid \mathbf{0}]=\left[\begin{array}{ll|l}
0 & 5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The solution set is E_{2}. We see that

$$
E_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

and so $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ is a basis for the eigenspace E_{2}.
(26) We first find the eigenvalues for A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
(1-\lambda) & 2 \\
-2 & (3-\lambda)
\end{array}\right]=(1-\lambda)(3-\lambda)+4=\lambda^{2}-4 \lambda+7
$$

The eigenvalues are the roots of $\lambda^{2}-4 \lambda+7=0$. Since there are no real roots of this polynomial, A has no eigenvalues.
(27) We first find the eigenvalues for A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
(1-\lambda) & 1 \\
-1 & (1-\lambda)
\end{array}\right]=(1-\lambda)(1-\lambda)+1=\lambda^{2}-2 \lambda+2
$$

The eigenvalues are the roots of $\lambda^{2}-2 \lambda+2=0$. We see that A has eigenvalues $\lambda_{1}=1+i$ and $\lambda_{2}=1-i$.

To find the eigenspace E_{1+i}, we need to find the null space of $A-(1+i) I$. We row reduce the associated augmented matrix:

$$
[A-(1+i) I \mid \mathbf{0}]=\left[\begin{array}{rr|r}
-i & 1 & 0 \\
-1 & -i & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & i & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The solution set is E_{1+i}. We see that

$$
E_{1+i}=\operatorname{span}\left(\left[\begin{array}{r}
-i \\
1
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
i
\end{array}\right]\right)
$$

and so $\left\{\left[\begin{array}{l}1 \\ i\end{array}\right]\right\}$ is a basis for the eigenspace E_{1+i}.
To find the eigenspace E_{1-i}, we need to find the null space of $A-(1-i) I$. We row reduce the associated augmented matrix:

$$
[A-(1-i) I \mid \mathbf{0}]=\left[\begin{array}{rc|r}
i & 1 & 0 \\
-1 & i & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -i & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The solution set is E_{1-i}. We see that

$$
E_{1-i}=\operatorname{span}\left(\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{r}
1 \\
-i
\end{array}\right]\right),
$$

and so $\left\{\left[\begin{array}{r}1 \\ -i\end{array}\right]\right\}$ is a basis for the eigenspace E_{1-i}.
(28) We first find the eigenvalues for A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
(2-\lambda) & -3 \\
1 & (-\lambda)
\end{array}\right]=(2-\lambda)(-\lambda)+3=\lambda^{2}-2 \lambda+3
$$

The eigenvalues are the roots of $\lambda^{2}-2 \lambda+3=0$. We see that A has eigenvalues $\lambda_{1}=1+\sqrt{2} i$ and $\lambda_{2}=1-\sqrt{2} i$.

To find the eigenspace $E_{1+\sqrt{2} i}$, we need to find the null space of $A-(1+\sqrt{2} i) I$.
We row reduce the associated augmented matrix:

$$
[A-(1+\sqrt{2} i) I \mid \mathbf{0}]=\left[\begin{array}{cc|c}
(1-\sqrt{2} i) & -3 & 0 \\
1 & (-1-\sqrt{2} i) & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & (-1-\sqrt{2} i) & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The solution set is $E_{1+\sqrt{2} i}$. We see that

$$
E_{1+\sqrt{2} i}=\operatorname{span}\left(\left[\begin{array}{c}
1+\sqrt{2} i \\
1
\end{array}\right]\right),
$$

and so $\left\{\left[\begin{array}{c}1+\sqrt{2} i \\ 1\end{array}\right]\right\}$ is a basis for the eigenspace $E_{1+\sqrt{2} i}$.
To find the eigenspace $E_{1-\sqrt{2} i}$, we need to find the null space of $A-(1-\sqrt{2} i) I$.
We row reduce the associated augmented matrix:
$[A-(1-\sqrt{2} i) I \mid \mathbf{0}]=\left[\begin{array}{cc|c}(1+\sqrt{2} i) & -3 & 0 \\ 1 & (-1+\sqrt{2} i) & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & (-1+\sqrt{2} i) & 0 \\ 0 & 0 & 0\end{array}\right]$.
The solution set is $E_{1-\sqrt{2} i}$. We see that

$$
E_{1-\sqrt{2} i}=\operatorname{span}\left(\left[\begin{array}{c}
1-\sqrt{2} i \\
1
\end{array}\right]\right)
$$

and so $\left\{\left[\begin{array}{c}1-\sqrt{2} i \\ -i\end{array}\right]\right\}$ is a basis for the eigenspace $E_{1-\sqrt{2} i}$.

Section 4.2:

(1) Using cofactor expansion along the first row, we have

$$
\begin{aligned}
\left|\begin{array}{lll}
1 & 0 & 3 \\
5 & 1 & 1 \\
0 & 1 & 2
\end{array}\right| & =1\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|-0\left|\begin{array}{ll}
5 & 1 \\
0 & 2
\end{array}\right|+3\left|\begin{array}{ll}
5 & 1 \\
0 & 1
\end{array}\right| \\
& =1(2-1)-0+3(5-0) \\
& =16
\end{aligned}
$$

Using cofactor expansion along the first column, we have

$$
\begin{aligned}
\left|\begin{array}{lll}
1 & 0 & 3 \\
5 & 1 & 1 \\
0 & 1 & 2
\end{array}\right| & =1\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|-5\left|\begin{array}{ll}
0 & 3 \\
1 & 2
\end{array}\right|+0\left|\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right| \\
& =1(2-1)-5(0-3)+0 \\
& =16
\end{aligned}
$$

(6) Using cofactor expansion along the first row, we have

$$
\begin{aligned}
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right| & =1\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right|-2\left|\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right|+3\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right| \\
& =1(45-48)-2(36-42)+3(32-35) \\
& =0
\end{aligned}
$$

Using cofactor expansion along the first column, we have

$$
\begin{aligned}
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right| & =1\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right|-4\left|\begin{array}{ll}
2 & 3 \\
8 & 9
\end{array}\right|+7\left|\begin{array}{ll}
2 & 3 \\
5 & 6
\end{array}\right| \\
& =1(45-48)-4(18-24)+7(12-15) \\
& =0
\end{aligned}
$$

(9) Using cofactor expansion along the third row, we have

$$
\begin{aligned}
\left|\begin{array}{rrr}
-4 & 1 & 3 \\
2 & -2 & 4 \\
1 & -1 & 0
\end{array}\right| & =1\left|\begin{array}{rr}
1 & 3 \\
-2 & 4
\end{array}\right|-(-1)\left|\begin{array}{rr}
-4 & 3 \\
2 & 4
\end{array}\right|+0\left|\begin{array}{rr}
-4 & 1 \\
2 & -2
\end{array}\right| \\
& =1(4+6)+1(-16-6)+0 \\
& =-12
\end{aligned}
$$

(13) Starting with cofactor expansion along the third row, we have

$$
\begin{aligned}
\left|\begin{array}{rrrr}
1 & -1 & 0 & 3 \\
2 & 5 & 2 & 6 \\
0 & 1 & 0 & 0 \\
1 & 4 & 2 & 1
\end{array}\right| & =-1\left|\begin{array}{lll}
1 & 0 & 3 \\
2 & 2 & 6 \\
1 & 2 & 1
\end{array}\right| \\
& =-1\left(1\left|\begin{array}{ll}
2 & 6 \\
2 & 1
\end{array}\right|-0\left|\begin{array}{cc}
2 & 6 \\
1 & 1
\end{array}\right|+3\left|\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right|\right) \\
& =-1[(2-12)-0+3(4-2)] \\
& =-1(-4) \\
& =4
\end{aligned}
$$

(23) We row reduce the given matrix A keeping track of our row operations along the way:

$$
\begin{aligned}
A=\left[\begin{array}{rrr}
-4 & 1 & 3 \\
2 & -2 & 4 \\
1 & -1 & 0
\end{array}\right] & \rightarrow B=\left[\begin{array}{rrr}
1 & -1 & 0 \\
2 & -2 & 4 \\
-4 & 1 & 3
\end{array}\right] \\
& \rightarrow C=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 0 & 4 \\
0 & -3 & 3
\end{array}\right] \\
& \rightarrow D=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & -3 & 3 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

By Theorem 4.2, we have:

$$
\operatorname{det}(B)=-\operatorname{det}(A) ; \operatorname{det}(C)=\operatorname{det}(B) ; \operatorname{det}(D)=-\operatorname{det}(C)
$$

So,

$$
\operatorname{det}(A)=-\operatorname{det}(B)=-\operatorname{det}(C)=\operatorname{det}(D)=1\left|\begin{array}{rr}
-3 & 3 \\
0 & 4
\end{array}\right|=-12
$$

(26) We can row reduce the given matrix A with the operation $R_{3} \rightarrow R_{3}-2 R_{1}$. This gives a new matrix B such that $\operatorname{det}(B)=\operatorname{det}(A)$. Moreover, since the third row of B is a zero row, $\operatorname{det}(B)=0$. We conclude that $\operatorname{det}(A)=0$.
(35) By Theorem 4.3,

$$
\left|\begin{array}{ccc}
2 a & 2 b & 2 c \\
d & e & f \\
g & h & i
\end{array}\right|=2\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=2(4)=8 .
$$

(36) By Theorem 4.10,

$$
\left|\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right|=4
$$

So, by Theorem 4.3,

$$
\left|\begin{array}{rrr}
3 a & 3 d & 3 g \\
-b & -e & -h \\
2 c & 2 f & 2 i
\end{array}\right|=4(3)(-1)(2)=-24 .
$$

We again apply Theorem 4.10 to obtain

$$
\left|\begin{array}{ccc}
3 a & -b & 2 c \\
3 d & -e & 2 f \\
3 g & -h & 2 i
\end{array}\right|=-24
$$

(37) By Theorem 4.3,

$$
\left|\begin{array}{lll}
d & e & f \\
a & b & c \\
g & h & i
\end{array}\right|=-\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=-4 .
$$

(40) Observe that we have the following row reductions:

$$
A=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \rightarrow B=\left[\begin{array}{ccc}
a & b & c \\
2 d & 2 e & 2 f \\
g & h & i
\end{array}\right] \rightarrow C=\left[\begin{array}{ccc}
a & b & c \\
2 d-3 g & 2 e-3 h & 2 f-3 i \\
g & h & i
\end{array}\right]
$$

By Theorem 4.3,

$$
\operatorname{det}(C)=\operatorname{det}(B)=2 \operatorname{det}(A)=2(4)=8
$$

(45) Using cofactor expansion along the first column of A, we compute

$$
\begin{aligned}
\operatorname{det}(A) & =k\left|\begin{array}{cc}
k+1) & 1 \\
-8 & (k-1)
\end{array}\right|-0\left|\begin{array}{cc}
-k & 3 \\
-8 & (k-1)
\end{array}\right|+k\left|\begin{array}{cc}
-k & 3 \\
(k+1) & 1
\end{array}\right| \\
& =k\left(k^{2}+7\right)+k(-4 k-3) \\
& =k^{3}-4 k^{2}+4 k \\
& =k\left(k^{2}-4 k+4\right) \\
& =k(k-2)^{2}
\end{aligned}
$$

By Theorem 4.6, A is invertible if and only if $\operatorname{det}(A) \neq 0$. We conclude that A is invertible if and only if $k \neq 0,2$.

