Homework Solutions - Week of September 23

Note: Exercises Section 3.6: \# 1, 4, 5, 9, 12, 13, 15, 17, 18, 19, 20, 21, 23, 24, 31, 37 should be completed during the week of September 30 .

Section 3.5:

(35) We row reduce:

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right]
$$

Since $\operatorname{RREF}(A)$ has two leading entries, we see that $\operatorname{rank}(A)=2$. By the Rank Theorem,

$$
\operatorname{nullity}(A)=3-\operatorname{rank}(A)=3-2=1 .
$$

(39) A complete solution to this exercise can be found at the back of the text (page 683).
(41) Since A is 3×5, we have that $\operatorname{rank}(A) \leq \min (3,5)=3$. By the Rank Theorem,

$$
\operatorname{nullity}(A)=5-\operatorname{rank}(A) .
$$

So, $\operatorname{nullity}(A)$ is $2,3,4$, or 5 .
(42) Since A is 4×2, we have that $\operatorname{rank}(A) \leq \min (4,2)=2$. By the Rank Theorem,

$$
\operatorname{nullity}(A)=2-\operatorname{rank}(A) .
$$

So, $\operatorname{nullity}(A)$ is 0,1 , or 2 .
(46) We form a matrix whose columns are the given vectors and row reduce:

$$
\left[\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 5 & -3 \\
3 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 2 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Since the rank of this matrix is 2 and not 3, the Fundamental Theorem of Invertible Matrices says that the given vectors do not form a basis for \mathbb{R}^{3}.
(49) A complete solution to this exercise can be found at the back of the text (page 683).

Section 3.6:

(1) We have

$$
T_{A}(\mathbf{u})=A \mathbf{u}=\left[\begin{array}{rr}
2 & -1 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
11
\end{array}\right]
$$

and

$$
T_{A}(\mathbf{v})=A \mathbf{v}=\left[\begin{array}{rr}
2 & -1 \\
3 & 4
\end{array}\right]\left[\begin{array}{r}
3 \\
-2
\end{array}\right]=\left[\begin{array}{l}
8 \\
1
\end{array}\right] .
$$

(4) Let $\mathbf{u}=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$ be two vectors in \mathbb{R}^{2}. Then

$$
\begin{aligned}
T(\mathbf{u}+\mathbf{v}) & =T\left[\begin{array}{l}
x_{1}+x_{2} \\
y_{1}+y_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\left(y_{1}+y_{2}\right) \\
\left(x_{1}+x_{2}\right)+2\left(y_{1}+y_{2}\right) \\
3\left(x_{1}+x_{2}\right)-4\left(y_{1}+y_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
-y_{1} \\
x_{1}+2 y_{1} \\
3 x_{1}-4 y_{1}
\end{array}\right]+\left[\begin{array}{c}
-y_{2} \\
x_{2}+2 y_{2} \\
3 x_{2}-4 y_{2}
\end{array}\right] \\
& =T\left[\begin{array}{c}
x_{1} \\
y_{1}
\end{array}\right]+T\left[\begin{array}{c}
x_{2} \\
y_{2}
\end{array}\right] \\
& =T(\mathbf{u})+T(\mathbf{v})
\end{aligned}
$$

Now let $c \in \mathbb{R}$ and $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}$. Then

$$
\begin{aligned}
T(c \mathbf{u}) & =T\left[\begin{array}{l}
c x \\
c y
\end{array}\right] \\
& =\left[\begin{array}{c}
-c y \\
c x+2 c y \\
3 c x-4 c y
\end{array}\right] \\
& =c\left[\begin{array}{c}
-y \\
x+2 y \\
3 x-4 y
\end{array}\right] \\
& =c T\left[\begin{array}{c}
x \\
y
\end{array}\right] \\
& =c T(\mathbf{u})
\end{aligned}
$$

(5) Let $\mathbf{u}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right], \mathbf{v}=\left[\begin{array}{l}d \\ e \\ f\end{array}\right]$ be two vectors in \mathbb{R}^{3}. Then

$$
\begin{aligned}
T(\mathbf{u}+\mathbf{v}) & =T\left[\begin{array}{c}
a+d \\
b+e \\
c+f
\end{array}\right] \\
& =\left[\begin{array}{c}
(a+d)-(b+e)+(c+f) \\
2(a+d)+(b+e)-3(c+f)
\end{array}\right] \\
& =\left[\begin{array}{c}
a-b+c \\
2 a+b-3 c
\end{array}\right]+\left[\begin{array}{c}
d-e+f \\
2 d+e-3 f
\end{array}\right] \\
& =T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]+T\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right] \\
& =T(\mathbf{u})+T(\mathbf{v})
\end{aligned}
$$

Now let $c \in \mathbb{R}$ and $\mathbf{u}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}$. Then

$$
\begin{aligned}
T(c \mathbf{u}) & =T\left[\begin{array}{l}
c x \\
c y \\
c z
\end{array}\right] \\
& =\left[\begin{array}{c}
c x-c y+c z \\
2 c x+c y-3 c z
\end{array}\right] \\
& =c\left[\begin{array}{c}
x-y+z \\
2 x+y-3 z
\end{array}\right] \\
& =c T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& =c T(\mathbf{u})
\end{aligned}
$$

(9) Let $\mathbf{u}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Then

$$
T(\mathbf{u})=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and

$$
T(\mathbf{v})=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

But,

$$
T(\mathbf{u}+\mathbf{v})=T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \neq T(\mathbf{u})+T(\mathbf{v})=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

(12) We calculate

$$
T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]
$$

and

$$
T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
-4
\end{array}\right]
$$

So, the standard matrix is

$$
[T]=\left[\begin{array}{rr}
0 & -1 \\
1 & 2 \\
3 & -4
\end{array}\right]
$$

(13) We find

$$
T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right], T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
1
\end{array}\right], T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-3
\end{array}\right]
$$

So, the standard matrix is

$$
[T]=\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -3
\end{array}\right]
$$

(15) In general,

$$
F\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
-x \\
y
\end{array}\right] .
$$

So,

$$
F\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0
\end{array}\right], F\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Thus, if F were linear, the standard matrix would be

$$
[F]=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

We show that F is a matrix transformation by verifying that $F(\mathbf{v})=[F] \mathbf{v}$:

$$
F\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
-x \\
y
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

(17) In general,

$$
D\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x \\
3 y
\end{array}\right] .
$$

So,

$$
D\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right], D\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

Thus, if D were linear, the standard matrix would be

$$
[D]=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

We show that D is a matrix transformation by verifying that $D(\mathbf{v})=[D] \mathbf{v}$:

$$
D\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x \\
3 y
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

(18) First note that $\mathbf{d}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a direction vector for the line $y=x$. Observe that

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=x+y
$$

and

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]=2 .
$$

So, by Example 3.59,

$$
P\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{x+y}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
(x+y) / 2 \\
(x+y) / 2
\end{array}\right] .
$$

So,

$$
P\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right], P\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right] .
$$

Thus, if P were linear, the standard matrix would be

$$
[P]=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

We show that P is a matrix transformation by verifying that $P(\mathbf{v})=[P] \mathbf{v}$:

$$
P\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
(x+y) / 2 \\
(x+y) / 2
\end{array}\right]=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

(19) Each transformation is defined by matrix multiplication:

$$
\begin{gathered}
T_{A_{1}}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
k & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
k x \\
y
\end{array}\right], \\
T_{A_{2}}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
k y
\end{array}\right], \\
T_{A_{3}}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
x
\end{array}\right], \\
T_{A_{4}}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+k y \\
y
\end{array}\right],
\end{gathered}
$$

and

$$
T_{A_{5}}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
k x+y
\end{array}\right] .
$$

Geometric descriptions and pictures to illustrate the results can be found at the back of the text (page 683).
(20) We let $\theta=120^{\circ}$ in Example 3.58. This gives the standard matrix

$$
\left[R_{120}\right]=\left[\begin{array}{cc}
\cos 120^{\circ} & -\sin 120^{\circ} \\
\sin 120^{\circ} & \cos 120^{\circ}
\end{array}\right]=\left[\begin{array}{rr}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right] .
$$

(21) Note that a clockwise rotation through 30° about the origin is the inverse of a 30° counterclockwise rotation. Thus, the standard matrix is the inverse of $\left[R_{\theta}\right]$ from Example 3.58 where $\theta=30^{\circ}$. That is, by Theorem 3.33,

$$
\left[R_{-30}\right]=\left[\left(R_{30}\right)^{-1}\right]=\left[R_{30}\right]^{-1}=\left[\begin{array}{rr}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right]^{-1}=\left[\begin{array}{rr}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right] .
$$

(23) First note that $\mathbf{d}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is a direction vector for the line $y=-x$. Observe that

$$
\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=x-y
$$

and

$$
\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=2 .
$$

So, by Example 3.59,

$$
P\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{x-y}{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
(x-y) / 2 \\
-(x-y) / 2
\end{array}\right] .
$$

So,

$$
P\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right], P\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 / 2 \\
1 / 2
\end{array}\right] .
$$

Thus, the standard matrix is

$$
[P]=\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]
$$

(24) We have

$$
T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right], T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

So the standard matrix is

$$
[T]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(31) (a) We calculate

$$
\begin{aligned}
(S \circ T)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =S\left(T\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) \\
& =S\left[\begin{array}{c}
x_{1}+2 x_{2} \\
-3 x_{1}+x_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(x_{1}+2 x_{2}\right)+3\left(-3 x_{1}+x_{2}\right) \\
\left(x_{1}+2 x_{2}\right)-\left(-3 x_{1}+x_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
-8 x_{1}+5 x_{2} \\
4 x_{1}+x_{2}
\end{array}\right] .
\end{aligned}
$$

(b) We first find

$$
[S]=\left[\begin{array}{rr}
1 & 3 \\
1 & -1
\end{array}\right]
$$

and

$$
[T]=\left[\begin{array}{rr}
1 & 2 \\
-3 & 1
\end{array}\right]
$$

So,

$$
\begin{aligned}
(S \circ T)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =[S][T]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{rr}
1 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{rr}
-8 & 5 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-8 x_{1}+5 x_{2} \\
4 x_{1}+x_{2}
\end{array}\right]
\end{aligned}
$$

which equals the answer in part (a).
(37) Let T be the linear transformation given by reflection in the y-axis and S be the linear transformation which is clockwise rotation through 30°. We want to
find the standard matrix $[S \circ T]$. The standard matrices $[T]$ and $[S]$ were found in Exercises \# 15 and 21, respectively. Therefore, by Theorem 3.32,

$$
[S \circ T]=[S][T]=\left[\begin{array}{rr}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
-\sqrt{3} / 2 & 1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right] .
$$

