Homework Solutions - Week of December 2

Section 6.6:

(17) (a) By definition,

$$
(S \circ T)(p(x))=S(T(p(x)))=S\left[\begin{array}{l}
p(0) \\
p(1)
\end{array}\right]=\left[\begin{array}{l}
p(0)-2 p(1) \\
2 p(0)-p(1)
\end{array}\right] .
$$

So,

$$
\begin{aligned}
& (S \circ T)(1)=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=-\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}} \\
& (S \circ T)(x)=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]=-2 \mathbf{e}_{\mathbf{1}}-\mathbf{e}_{\mathbf{2}}
\end{aligned}
$$

Thus, by definition,

$$
[S \circ T]_{\mathcal{D} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
{[(S \circ T)(1)]_{\mathcal{D}}} & {[(S \circ T)(x)]_{\mathcal{D}}}
\end{array}\right]=\left[\begin{array}{rr}
-1 & -2 \\
1 & -1
\end{array}\right] .
$$

(b) Note that

$$
\begin{aligned}
& T(1)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}} \\
& T(x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0 \mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}
\end{aligned}
$$

Thus,

$$
[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
{[T(1)]_{\mathcal{C}}} & {[T(x)]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

In addition,

$$
\begin{aligned}
& S\left(\mathbf{e}_{\mathbf{1}}\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\mathbf{e}_{\mathbf{1}}+2 \mathbf{e}_{\mathbf{2}} \\
& S\left(\mathbf{e}_{\mathbf{2}}\right)=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]=-2 \mathbf{e}_{\mathbf{1}}-\mathbf{e}_{\mathbf{2}}
\end{aligned}
$$

Thus,

$$
[S]_{\mathcal{D} \leftarrow \mathcal{C}}=\left[\begin{array}{ll}
{\left[S\left(\mathbf{e}_{1}\right)\right]_{\mathcal{D}}} & {\left[S\left(\mathbf{e}_{2}\right)\right]_{\mathcal{D}}}
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right] .
$$

Therefore, by Theorem 6.27,

$$
[S \circ T]_{\mathcal{D} \leftarrow \mathcal{B}}=[S]_{\mathcal{D} \leftarrow \mathcal{C}}[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right]=\left[\begin{array}{rr}
-1 & -2 \\
1 & -1
\end{array}\right] .
$$

(18) (a) We have, by definition,

$$
(S \circ T)(p(x))=S(T(p(x)))=S(p(x+1))=p(x+2) .
$$

Thus,

$$
\begin{aligned}
& (S \circ T)(1)=1=1(1)+0(x)+0\left(x^{2}\right) \\
& (S \circ T)(x)=x+2=2(1)+1(x)+0\left(x^{2}\right)
\end{aligned}
$$

Therefore,

$$
[S \circ T]_{\mathcal{D} \leftarrow \mathcal{B}}=\left[[(S \circ T)(1)]_{\mathcal{D}} \quad[(S \circ T)(x)]_{\mathcal{D}}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0
\end{array}\right] .
$$

(b) Note that

$$
\begin{aligned}
& T(1)=1=1(1)+0(x)+0\left(x^{2}\right) \\
& T(x)=x+1=1(1)+1(x)+0\left(x^{2}\right)
\end{aligned}
$$

Thus,

$$
[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
{[T(1)]_{\mathcal{C}}} & {[T(x)]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

In addition,

$$
\begin{aligned}
S(1) & =1=1(0)+0(x)+0\left(x^{2}\right) \\
S(x) & =x+1=1(1)+1(x)+0\left(x^{2}\right) \\
S\left(x^{2}\right) & =(x+1)^{2}=1(1)+2(x)+1\left(x^{2}\right)
\end{aligned}
$$

Thus,

$$
[S]_{\mathcal{D} \leftarrow \mathcal{C}}=\left[\begin{array}{lll}
{[S(1)]_{\mathcal{D}}} & {[S(x)]_{\mathcal{D}}} & {\left[S\left(x^{2}\right)\right]_{\mathcal{D}}}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Therefore, by Theorem 6.27,

$$
[S \circ T]_{\mathcal{D} \leftarrow \mathcal{B}}=[S]_{\mathcal{D} \leftarrow \mathcal{C}}[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0
\end{array}\right] .
$$

(19) Let $\mathcal{B}=\{1, x\}$ be the standard basis for \mathcal{P}_{1}. From Exercise (1), we have

$$
[T]_{\mathcal{B}}=A=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

Since $\operatorname{det}(A)=1 \neq 0$, we know that A is invertible. Thus, by Theorem $6.28, T$ is invertible and

$$
\left[T^{-1}\right]_{\mathcal{B}}=A^{-1}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

So,

$$
\left[T^{-1}(a+b x)\right]_{\mathcal{B}}=A^{-1}[a+b x]_{\mathcal{B}}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{r}
-b \\
a
\end{array}\right] .
$$

We conclude that $T^{-1}(a+b x)=-b+a x$.
(20) In Exercise 5 we found that

$$
A=[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

where $\mathcal{B}=\left\{1, x, x^{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}\right\}$ are the standard bases of \mathcal{P}_{2} and \mathbb{R}^{2}, respectively. Since A is not a square matrix, it is not invertible. Therefore, by Theorem 6.28, the transformation T is not invertible.

