Homework Solutions - Week of November 25

Section 6.5:

(29) We first show that T is $1-1$. By Theorem 6.20 , it suffices to show that $\operatorname{ker}(T)=\{0\}$.

Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} a^{n}$ such that $p(x)$ is in the kernel of T. Then

$$
\begin{aligned}
0+0 x+0 x^{2}+\cdots+0 x^{n} & =T(p(x)) \\
& =x^{n} p\left(\frac{1}{x}\right) \\
& =x^{n}\left[a_{0}+a_{1}\left(\frac{1}{x}\right)+a_{2}\left(\frac{1}{x}\right)^{2}+\cdots+a_{n}\left(\frac{1}{x}\right)^{n}\right] \\
& =a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}
\end{aligned}
$$

Comparing coefficients, we see that $a_{0}=a_{1}=\cdots=a_{n}=0$. That is, $p(x)$ is the zero polynomial. We conclude that $\operatorname{ker}(T)=\{\mathbf{0}\}$, and so T is $1-1$. By Theorem $6.21, T$ must also be onto. Therefore, T is an isomorphism.
(31) First recall that $\mathcal{C}[a, b]$ denotes the set of all continous functions from $[a, b]$ to \mathbb{R}.

Define $T: \mathcal{C}[0,1] \rightarrow \mathcal{C}[0,2]$ by $T(f)=g$ where g is the function such that $g(x)=f\left(\frac{x}{2}\right)$.
Let $f \in \mathcal{C}[0,1]$ such that $T(f)=g$ is the zero function. Then for all x we have

$$
g(x)=f\left(\frac{x}{2}\right)=0 \Longrightarrow f(x)=0 .
$$

That is, f is the zero function. By Theorem 6.20, we have that T is $1-1$.
Now let $g \in \mathcal{C}[0,2]$. Let $f \in \mathcal{C}[0,1]$ be the function defined by $f(x)=g(2 x)$. Then $T(f)=g$ which shows that T is also onto.
Since T is an isomorphism, we conclude that $\mathcal{C}[0,1]$ and $\mathcal{C}[0,2]$ are isomorphic.
(33) (a) Let \mathbf{x} be in $\operatorname{ker}(S \circ T)$. Then $(S \circ T)(\mathbf{x})=S(T(\mathbf{x}))=\mathbf{0}$. Since S is $1-1$, we must have that $T(\mathbf{x})=\mathbf{0}$. But, since T is $1-1$, we then must have $\mathbf{x}=\mathbf{0}$. Therefore, $\operatorname{ker}(S \circ T)=\{\mathbf{0}\}$ showing that $S \circ T$ is 1-1.
(b) Let $\mathbf{x} \in W$. Since S is onto, there exists $\mathbf{y} \in V$ such that $S(\mathbf{y})=\mathbf{x}$. Also, since T is onto, there exists $\mathbf{m} \in U$ such that $T(\mathbf{m})=\mathbf{y}$. So,

$$
(S \circ T)(\mathbf{m})=S(T(\mathbf{m}))=S(\mathbf{y})=\mathbf{x} .
$$

That is, \mathbf{x} is in the range of $S \circ T$. Since \mathbf{x} was arbitrarily chosen, $S \circ T$ is onto.
(35) (a) Suppose that T is onto. Then $\operatorname{range}(T)=W$ and so $\operatorname{rank}(T)=\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}(W)$. Thus, by the Rank Theorem

$$
\operatorname{dim}(V)=\operatorname{Rank}(T)+\operatorname{Nullity}(T)=\operatorname{dim}(W)+\operatorname{Nullity}(T) .
$$

So, since $\operatorname{dim}(V)<\operatorname{dim}(W)$,

$$
\operatorname{dim}(V)+\operatorname{Nullity}(T)<\operatorname{dim}(W)+\operatorname{Nullity}(T)=\operatorname{dim}(V)
$$

implying that $\operatorname{Nullity}(T)<0$, a contradiction. We conclude that T cannot be onto.
(b) Suppose that T is 1-1. Then, $\operatorname{ker}(T)=\{\mathbf{0}\}$ and so $\operatorname{Nullity}(T)=\operatorname{dim}(\operatorname{ker}(T))=0$. Thus, by the Rank Theorem,

$$
\operatorname{dim}(V)=\operatorname{Rank}(T)+\operatorname{Nullity}(T)=\operatorname{Rank}(T)=\operatorname{dim}(\operatorname{Range}(T)) .
$$

But, since $\operatorname{Range}(T)$ is a subspace of $W, \operatorname{dim}(\operatorname{Range}(T)) \leq \operatorname{dim}(W)$. Putting this together with the above, we conclude that $\operatorname{dim}(V) \leq \operatorname{dim}(W)$, a contradition to our assumption. Therefore, T cannot be 1-1.
(37) First we show that $\operatorname{ker}(T)=\operatorname{ker}\left(T^{2}\right)$. To see this, let $\mathbf{x} \in \operatorname{ker}(T)$. Then

$$
T(\mathbf{x})=\mathbf{0} \Longrightarrow T(T(\mathbf{x}))=T(\mathbf{0})=\mathbf{0}
$$

which shows that $\mathbf{x} \in \operatorname{ker}\left(T^{2}\right)$ (i.e., $\operatorname{ker}(T)$ is a subset of $\operatorname{ker}\left(T^{2}\right)$). Moreover, by the Rank Theorem, we have

$$
\begin{aligned}
\operatorname{dim}(V) & =\operatorname{Nullity}(T)+\operatorname{Rank}(T) \\
\operatorname{dim}(V) & =\operatorname{Nullity}\left(T^{2}\right)+\operatorname{Rank}\left(T^{2}\right)
\end{aligned}
$$

Since $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$ this implies that $\operatorname{nullity}(T)=\operatorname{nullity}\left(T^{2}\right)$. Thus, $\operatorname{ker}(T) \subseteq \operatorname{ker}\left(T^{2}\right)$ and $\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}\left(\operatorname{ker}\left(T^{2}\right)\right)$, which shows that $\operatorname{ker}(T)=\operatorname{ker}\left(T^{2}\right)$.
Now let $\mathbf{v} \in \operatorname{range}(T) \cap \operatorname{ker}(T)$. Then $T(\mathbf{v})=\mathbf{0}$ and there exists $\mathbf{y} \in V$ such that $T(\mathbf{y})=\mathbf{v}$. Thus,

$$
\mathbf{0}=T(\mathbf{v})=T(T(\mathbf{y}))=T^{2}(\mathbf{y}) .
$$

This shows that $\mathbf{y} \in \operatorname{ker}\left(T^{2}\right)=\operatorname{ker}(T)$. Thus, $\mathbf{v}=T(\mathbf{y})=\mathbf{0}$. Observe that since $T(\mathbf{0})=\mathbf{0}$, $\mathbf{0} \in \operatorname{range}(T) \cap \operatorname{ker}(T)$.
We conclude that range $(T) \cap \operatorname{ker}(T)=\{\mathbf{0}\}$.

Section 6.6:

(1) We calculate that

$$
\begin{aligned}
& T(1)=0(1)-x \\
& T(x)=1+0 x
\end{aligned}
$$

So,

$$
A=[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
{[T(1)]_{\mathcal{C}}} & {[T(x)]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

Now $T(\mathbf{v})=2-4 x$. We verify this using Theorem 6.26:

$$
[T(\mathbf{v})]_{\mathcal{C}}=A[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
2 \\
-4
\end{array}\right]
$$

i.e., $T(\mathbf{v})=2(1)-4(x)=2-4 x$.
(2) We calculate that

$$
\begin{aligned}
& T(1+x)=1-x \\
& T(1-x)=-1-x
\end{aligned}
$$

So,

$$
A=[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
{[T(1+x)]_{\mathcal{C}}} & {[T(1-x)]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
-1 & -1
\end{array}\right] .
$$

Now $\mathbf{v}=4+2 x=3(1+x)+1(1-x)$ and $T(\mathbf{v})=2-4 x$. We verify this using Theorem 6.26:

$$
[T(\mathbf{v})]_{\mathcal{C}}=A[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{rr}
1 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
2 \\
-4
\end{array}\right],
$$

i.e., $T(\mathbf{v})=2(1)-4(x)=2-4 x$.
(5) We calculate

$$
\begin{aligned}
T(1) & =\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}} \\
T(x) & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0 \mathbf{e}_{1}+\mathbf{e}_{2} \\
T\left(x^{2}\right) & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0 \mathbf{e}_{1}+\mathbf{e}_{2}
\end{aligned}
$$

So,

$$
A=[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{lll}
{[T(1)]_{\mathcal{C}}} & {[T(x)]_{\mathcal{C}}} & {\left[T\left(x^{2}\right)\right]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right] .
$$

Now $T(\mathbf{v})=\left[\begin{array}{c}a \\ a+b+c\end{array}\right]$. We verify this using Theorem 6.26:

$$
[T(\mathbf{v})]_{\mathcal{C}}=A[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
a \\
a+b+c
\end{array}\right]
$$

i.e., $T(\mathbf{v})=a \mathbf{e}_{\mathbf{1}}+(a+b+c) \mathbf{e}_{\mathbf{2}}=\left[\begin{array}{c}a \\ a+b+c\end{array}\right]$.
(6) We calculate

$$
\begin{aligned}
T\left(x^{2}\right) & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]=-\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
T(x) & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]=-\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
T(1) & =\left[\begin{array}{l}
1 \\
1
\end{array}\right]=0\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

So,

$$
A=[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{lll}
{\left[T\left(x^{2}\right)\right]_{\mathcal{C}}} & {[T(x)]_{\mathcal{C}}} & {[T(1)]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{rrr}
-1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right] .
$$

Now $T(\mathbf{v})=\left[\begin{array}{c}a \\ a+b+c\end{array}\right]$. We verify this using Theorem 6.26:

$$
[T(\mathbf{v})]_{\mathcal{C}}=A[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{rrr}
-1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
c \\
b \\
a
\end{array}\right]=\left[\begin{array}{c}
-c-b \\
a+b+c
\end{array}\right]
$$

i.e., $T(\mathbf{v})=(-c-b)\left[\begin{array}{l}1 \\ 0\end{array}\right]+(a+b+c)\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{c}a \\ a+b+c\end{array}\right]$.
(13) (a) Let $f(x)=a \sin x+b \cos x \in W$. Then $D(f(x))=f^{\prime}(x)=a \cos x-b \sin x \in W$. Thus, D maps W into itself.
(b) We calculate that

$$
\begin{aligned}
D(\sin x) & =0(\sin x)+\cos x \\
D(\cos x) & =-\sin x+0 \cos x
\end{aligned}
$$

So,

$$
A=[D]_{\mathcal{B}}=\left[\begin{array}{ll}
{[D(\sin x)]_{\mathcal{B}}} & {[D(\cos x)]_{\mathcal{B}}}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(c) We have $D(f(x))=f^{\prime}(x)=3 \cos x+5 \sin x$. We verify this using Theorem 6.26 :

$$
[D(f(x))]_{\mathcal{B}}=A[f(x)]_{\mathcal{B}}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{r}
3 \\
-5
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right]
$$

i.e., $D(f(x))=5 \sin x+3 \cos x$.

