Homework Solutions - Week of November 18

Section 6.3:

(17) The sets $\mathcal{B}=\left\{1, x-1,(x-1)^{2}\right\}$ and $\mathcal{C}=\left\{1, x, x^{2}\right\}$ are both bases for \mathcal{P}_{2}. We need to find $[p(x)]_{\mathcal{B}}$. Observe that

$$
\begin{aligned}
1 & =1(1)+0(x-1)+0(x-1)^{2} \\
x & =1(1)+1(x-1)+0(x-1)^{2} \\
x^{2} & =1(1)+2(x-1)+1(x-1)^{2}
\end{aligned}
$$

Thus,

$$
P_{\mathcal{B} \leftarrow \mathcal{C}}=\left[\begin{array}{lll}
{[1]_{\mathcal{B}}} & {[x]_{\mathcal{B}}} & {\left[x^{2}\right]_{\mathcal{B}}}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

By Theorem 6.12,

$$
[p(x)]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{C}}[p(x)]_{\mathcal{C}}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-5
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-8 \\
-5
\end{array}\right] .
$$

We conclude that the Taylor polynomial of $p(x)$ about $a=1$ is

$$
p(x)=-2-8(x-1)-5(x-1)^{2} .
$$

(18) The sets $\mathcal{B}=\left\{1, x+2,(x+2)^{2}\right\}$ and $\mathcal{C}=\left\{1, x, x^{2}\right\}$ are both bases for \mathcal{P}_{2}. We need to find $[p(x)]_{\mathcal{B}}$. Observe that

$$
\begin{aligned}
1 & =1(1)+0(x+2)+0(x+2)^{2} \\
x & =-2(1)+1(x+2)+0(x+2)^{2} \\
x^{2} & =4(1)-4(x+2)+(x+2)^{2}
\end{aligned}
$$

Thus,

$$
P_{\mathcal{B} \leftarrow \mathcal{C}}=\left[\begin{array}{lll}
{[1]_{\mathcal{B}}} & {[x]_{\mathcal{B}}} & {\left[x^{2}\right]_{\mathcal{B}}}
\end{array}\right]=\left[\begin{array}{rrr}
1 & -2 & 4 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right] .
$$

By Theorem 6.12,

$$
[p(x)]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{C}}[p(x)]_{\mathcal{C}}=\left[\begin{array}{rrr}
1 & -2 & 4 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-5
\end{array}\right]=\left[\begin{array}{r}
-23 \\
22 \\
-5
\end{array}\right] .
$$

We conclude that the Taylor polynomial of $p(x)$ about $a=1$ is

$$
p(x)=-23+22(x+2)-5(x+2)^{2} .
$$

Section 6.4:

(2) T is not a linear transformation. For example,

$$
\begin{aligned}
2 T\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] & =2\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 2 \\
0 & 2
\end{array}\right] \\
& \neq T\left(2\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right) \\
& =T\left[\begin{array}{ll}
2 & 2 \\
2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

(3) T is a linear transformation. Let $A, C \in M_{n n}$ and α be a scalar. Then

$$
T(A+C)=(A+C) B=A B+C B=T(A)+T(C)
$$

and

$$
T(\alpha A)=(\alpha A) B=\alpha(A B)=\alpha T(A)
$$

(5) The transformation $T: M_{n n} \rightarrow \mathbb{R}$ defined by

$$
T(A)=T\left(\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\right)=\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}
$$

is linear.
Suppose that $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are both $n \times n$ matrices and α is a scalar. Then

$$
\begin{aligned}
T(A+B) & =T\left(\left[a_{i j}+b_{i j}\right]\right) \\
& =\left(a_{11}+b_{11}\right)+\left(a_{22}+b_{22}\right)+\cdots+\left(a_{n n}+b_{n n}\right) \\
& =\left(a_{11}+a_{22}+\cdots+a_{n n}\right)+\left(b_{11}+b_{22}+\cdots+b_{n n}\right) \\
& =\operatorname{tr}(A)+\operatorname{tr}(B) \\
& =T(A)+T(B)
\end{aligned}
$$

and

$$
\begin{aligned}
T(\alpha A) & =\operatorname{tr}(\alpha A) \\
& =\alpha a_{11}+\alpha a_{22}+\cdots+\alpha a_{n n} \\
& =\alpha\left(a_{11}+a_{22}+\cdots+a_{n n}\right) \\
& =\alpha \operatorname{tr}(A) \\
& =\alpha T(A) .
\end{aligned}
$$

(7) T is not linear. For example, let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Then

$$
A+B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

We see that

$$
T(A)+T(B)=\operatorname{rank}(A)+\operatorname{rank}(B)=2+2=4 \neq T(A+B)=\operatorname{rank}(A+B)=0
$$

(8) T is not linear. For example,

$$
\begin{aligned}
2 T\left(1+x+x^{2}\right) & =2\left(2+2 x+2 x^{2}\right) \\
& =4+4 x+4 x^{2} \\
& \neq T\left(2\left(1+x+x^{2}\right)\right) \\
& =T\left(2+2 x+2 x^{2}\right) \\
& =3+3 x+3 x^{2} .
\end{aligned}
$$

(16) Using the fact that T is linear, we have

$$
\begin{aligned}
T\left(6+x-4 x^{2}\right) & =6 T(1)+1 T(x)-4 T\left(x^{2}\right) \\
& =6(3-2 x)+\left(4 x-x^{2}\right)-4\left(2+2 x^{2}\right) \\
& =10-8 x-9 x^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
T\left(a+b x+c x^{2}\right) & =a T(1)+b T(x)+c T\left(x^{2}\right) \\
& =a(3-2 x)+b\left(4 x-x^{2}\right)+c\left(2+2 x^{2}\right) \\
& =(3 a+2 c)+(-2 a+4 b) x+(-b+2 c) x^{2}
\end{aligned}
$$

(17) First note that

$$
4-x+3 x^{2}=0(1+x)-1\left(x+x^{2}\right)+4\left(1+x^{2}\right)
$$

So, using the fact that T is linear, we have

$$
\begin{aligned}
T\left(4-x+3 x^{2}\right) & =T\left(0(1+x)-1\left(x+x^{2}\right)+4\left(1+x^{2}\right)\right) \\
& =0 T(1+x)-1 T\left(x+x^{2}\right)+4 T\left(1+x^{2}\right) \\
& =0\left(1+x^{2}\right)-\left(x-x^{2}\right)+4\left(1+x+x^{2}\right) \\
& =4+3 x+5 x^{2}
\end{aligned}
$$

To find $T\left(a+b x+c^{2}\right)$ in general, we need to write $a+b x+c x^{2}$ as a linear combination of $1+x$, $x+x^{2}$ and $1+x^{2}$:

$$
\begin{aligned}
a+b x+c x^{2} & =c_{1}(1+x)+c_{2}\left(x+x^{2}\right)+c_{3}\left(1+x^{2}\right) \\
& =\left(c_{1}+c_{3}\right)+\left(c_{1}+c_{2}\right) x+\left(c_{2}+c_{3}\right) x^{2}
\end{aligned}
$$

Comparing coefficients this gives the linear system

$$
\begin{aligned}
& c_{1}+c_{3}=a \\
& c_{1}+c_{2}=b \\
& c_{2}+c_{3}=c
\end{aligned}
$$

We form the augmented matrix and row-reduce:

$$
\left[\begin{array}{ccc:c}
1 & 0 & 1 & a \\
1 & 1 & 0 & b \\
0 & 1 & 1 & c
\end{array}\right] \rightarrow\left[\begin{array}{ccc:c}
1 & 0 & 1 & a \\
0 & 1 & -1 & b-a \\
0 & 0 & 2 & c-b+a
\end{array}\right]
$$

Solving the system, we obtain

$$
\begin{aligned}
& c_{1}=\frac{a+b-c}{2} \\
& c_{2}=\frac{-a+b+c}{2} \\
& c_{3}=\frac{a-b+c}{2}
\end{aligned}
$$

Thus, using the linearity of T, we have

$$
\begin{aligned}
& T\left(a+b x+c x^{2}\right) \\
= & T\left(\left(\frac{a+b-c}{2}\right)(1+x)+\left(\frac{-a+b+c}{2}\right)\left(x+x^{2}\right)+\left(\frac{a-b+c}{2}\right)\left(1+x^{2}\right)\right) \\
= & \left(\frac{a+b-c}{2}\right) T(1+x)+\left(\frac{-a+b+c}{2}\right) T\left(x+x^{2}\right)+\left(\frac{a-b+c}{2}\right) T\left(1+x^{2}\right) \\
= & \left(\frac{a+b-c}{2}\right)\left(1+x^{2}\right)+\left(\frac{-a+b+c}{2}\right)\left(x-x^{2}\right)+\left(\frac{a-b+c}{2}\right)\left(1+x+x^{2}\right) \\
= & a+c x+\left(\frac{3 a-b-c}{2}\right) x^{2}
\end{aligned}
$$

(19) Let $\mathcal{B}=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ be the standard basis for M_{22}. Then

$$
\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=w E_{11}+x E_{12}+y E_{21}+z E_{22}
$$

Since $T: M_{22} \rightarrow \mathbb{R}$, we know that the images of the standard basis vectors are simply real numbers. Let $T\left(E_{11}\right)=a, T\left(E_{12}\right)=b, T\left(E_{21}\right)=c$ and $T\left(E_{22}\right)=d$ where a, b, c and d are real numbers. Then, by the linearity of T, we have

$$
\begin{aligned}
T\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right] & =T\left(w E_{11}+x E_{12}+y E_{21}+z E_{22}\right) \\
& =w T\left(E_{11}\right)+x T\left(E_{12}\right)+y T\left(E_{21}\right)+z T\left(E_{22}\right) \\
& =a w+b x+c y+d x
\end{aligned}
$$

(20) Observe that

$$
\left[\begin{array}{r}
0 \\
6 \\
-8
\end{array}\right]=6\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]-4\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right] .
$$

Since

$$
\begin{aligned}
T\left[\begin{array}{r}
0 \\
6 \\
-8
\end{array}\right] & =-2+2 x^{2} \\
& \neq 6 T\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]-4 T\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right] \\
& =6(1+x)-4\left(2-x+x^{2}\right) \\
& =-2+10 x-4 x^{2}
\end{aligned}
$$

the transformation T with the given properties cannot be linear.
(25) We have

$$
\begin{aligned}
(S \circ T)\left[\begin{array}{l}
2 \\
1
\end{array}\right] & =S\left(T\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right) \\
& =S\left[\begin{array}{r}
5 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{rr}
4 & -1 \\
0 & 6
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
(S \circ T)\left[\begin{array}{l}
x \\
y
\end{array}\right] & =S\left(T\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \\
& =S\left[\begin{array}{r}
2 x+y \\
-y
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 x & -y \\
0 & 2 x+2 y
\end{array}\right]
\end{aligned}
$$

Finally, $(T \circ S)\left[\begin{array}{l}x \\ y\end{array}\right]$ is not defined since $S\left[\begin{array}{l}x \\ y\end{array}\right]$ is a 2×2 matrix, but the domain of T is \mathbb{R}^{2}.
(29) We have

$$
\begin{aligned}
(S \circ T)\left[\begin{array}{l}
x \\
y
\end{array}\right] & =S\left(T\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \\
& =S\left[\begin{array}{c}
x-y \\
-3 x+4 y
\end{array}\right] \\
& =\left[\begin{array}{l}
4(x-y)+(-3 x+4 y) \\
3(x-y)+(-3 x+4 y)
\end{array}\right] \\
& =\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
(T \circ S)\left[\begin{array}{l}
x \\
y
\end{array}\right] & =T\left(S\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \\
& =T\left[\begin{array}{l}
4 x+y \\
3 x+y
\end{array}\right] \\
& =\left[\begin{array}{c}
(4 x+y)-(3 x+y) \\
-3(4 x+y)+4(3 x+y)
\end{array}\right] \\
& =\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

By definition, since $S \circ T=I_{\mathbb{R}^{2}}$ and $T \circ S=I_{\mathbb{R}^{2}}, S$ and T are inverses.

Section 6.5:

(1) (a) (i) Since

$$
T\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

the given matrix is not in $\operatorname{ker}(T)$.
(ii) Since

$$
T\left[\begin{array}{ll}
0 & 4 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

the given matrix is in $\operatorname{ker}(T)$.
(iii) Since

$$
T\left[\begin{array}{cc}
3 & 0 \\
0 & -3
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -3
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

the given matrix is not in $\operatorname{ker}(T)$.
(b) (i) Any matrix in range (T) must have zeros for the $(1,2)$ and $(2,1)$ entries. Thus, the given matrix is not in range (T).
(ii) For the same reason as in (i), the given matrix is not in range (T).
(iii) Since the $(1,2)$ and $(2,1)$ of the given matrix are 0 , this matrix is in range (T). In fact,

$$
T\left[\begin{array}{rr}
3 & 1 \\
1 & -3
\end{array}\right]=\left[\begin{array}{rr}
3 & 0 \\
0 & -3
\end{array}\right] .
$$

(c) We have

$$
\begin{aligned}
\operatorname{ker}(T) & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]:\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a=d=0\right\} \\
& =\left\{\left[\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right]\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{range}(T) & =\left\{T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]\right\}
\end{aligned}
$$

(3) (a) (i) Since

$$
T(1+x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

the given polynomial is not in $\operatorname{ker}(T)$.
(ii) Since

$$
T\left(x-x^{2}\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

the given polynomial is not in $\operatorname{ker}(T)$.
(iii) Since

$$
T\left(1+x-x^{2}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

the given polynomial is in $\operatorname{ker}(T)$.
(b) (i) Since

$$
T\left(1+x-x^{2}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

the given vector is in range (T).
(ii) Since

$$
T\left(2+x-x^{2}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

the given vector is in range (T).
(iii) Since

$$
T(1+x)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

the given vector is in range (T).
(c) We have

$$
\begin{aligned}
\operatorname{ker}(T) & =\left\{a+b x+c x^{2}: T\left(a+b x+c x^{2}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\} \\
& =\left\{a+b x+c x^{2}:\left[\begin{array}{c}
a-b \\
b+c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\} \\
& =\left\{a+b x+c x^{2}: a=b, b=-c\right\} \\
& =\left\{a+a x-a x^{2}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{range}(T) & =\left\{T\left(a+b x+c x^{2}\right): a+b x+c x^{2} \in \mathcal{P}_{2}\right\} \\
& =\left\{\left[\begin{array}{l}
a-b \\
b+c
\end{array}\right]\right\} \\
& =\mathbb{R}^{2}
\end{aligned}
$$

(5) From Exercise 1 we have that

$$
\begin{aligned}
\operatorname{ker}(T) & =\left\{\left[\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right]\right\} \\
& =\left\{c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right\} \\
& =\operatorname{span}\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)
\end{aligned}
$$

Suppose we have scalars c_{1} and c_{2} such that

$$
c_{1}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+c_{2}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

It is easy to see that $c_{1}=c_{2}=0$. Thus the spanning set is also linearly independent. We conclude that

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right\}
$$

is a basis for $\operatorname{ker}(T)$ and so $\operatorname{nullity}(T)=2$.
Similarly,

$$
\begin{aligned}
\operatorname{range}(T) & =\left\{\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]\right\} \\
& =\left\{a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
& =\operatorname{span}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)
\end{aligned}
$$

Suppose we have scalars c_{1} and c_{2} such that

$$
c_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+c_{2}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

It is easy to see that $c_{1}=c_{2}=0$. Thus the spanning set is also linearly independent. We conclude that

$$
\mathcal{B}^{\prime}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a basis for $\operatorname{range}(T)$ and so $\operatorname{rank}(T)=2$.
By the Rank Theorem,

$$
\operatorname{dim}\left(M_{22}\right)=4=2+2=\operatorname{nullity}(T)+\operatorname{rank}(T) .
$$

(7) From Exercise 3, we have that

$$
\operatorname{ker}(T)=\left\{a+a x-a x^{2}\right\}=\left\{a\left(1+x-x^{2}\right)\right\}=\operatorname{span}\left(1+x-x^{2}\right)
$$

Thus, since there is only only spanning vector in this case, we see that

$$
\mathcal{B}=\left\{1+x-x^{2}\right\}
$$

is a basis for $\operatorname{ker}(T)$ and so $\operatorname{nullity}(T)=1$.
Since range $(T)=\mathbb{R}^{2}$, we can take the standard basis

$$
\mathcal{B}^{\prime}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

as a basis for $\operatorname{range}(T)$. We conclude that $\operatorname{rank}(T)=2$.
By the Rank Theorem,

$$
\operatorname{dim}\left(\mathcal{P}_{2}\right)=3=1+2=\operatorname{nullity}(T)+\operatorname{rank}(T)
$$

(11) We have

$$
\begin{aligned}
\operatorname{ker}(T) & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]:\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]:\left[\begin{array}{ll}
a-b & -a+b \\
c-d & -c+d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a=b, c=d\right\} \\
& =\left\{\left[\begin{array}{ll}
a & a \\
c & c
\end{array}\right]\right\} \\
& =\left\{a\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]\right\} \\
& =\operatorname{span}\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]\right\}
\end{aligned}
$$

Furthermore, if c_{1} and c_{2} are scalars such that

$$
c_{1}\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+c_{2}\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

then clearly $c_{1}=c_{2}=0$ which shows that the spanning set is also linearly independent. Thus

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]\right\}
$$

is a basis for $\operatorname{ker}(T)$. Thus, $\operatorname{nullity}(T)=2$.
By the Rank Theorem

$$
\operatorname{dim}\left(M_{22}\right)=4=\operatorname{nullity}(T)+\operatorname{rank}(T)=2+\operatorname{rank}(T) \Longrightarrow \operatorname{rank}(T)=4-2=2 .
$$

(17) (a) We apply Theorem 6.20 to conclude that the transformation T is not $1-1$. To see that $\operatorname{ker}(T) \neq\{\mathbf{0}\}$ observe that $1+2 x+x^{2} \neq 0+0 x+0 x^{2}$ and

$$
T\left(1+2 x+x^{2}\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(b) Since $\operatorname{dim}\left(\mathcal{P}_{2}\right)=3=\operatorname{dim}\left(\mathbb{R}^{3}\right)$ and T is not 1-1, we apply Theorem 6.21 to conclude that T is also not onto.
(21) The vector space

$$
V=D_{3}=\left\{\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\right\}
$$

has basis

$$
\mathcal{B}=\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right\}
$$

(you should check that these matrices span D_{3} and are linearly independent). Thus,

$$
\operatorname{dim}\left(D_{3}\right)=3=\operatorname{dim}\left(\mathbb{R}^{3}\right)
$$

By Theorem 6.25, the vector spaces D_{3} and \mathbb{R}^{3} are isomorphic.
Define the linear transformation $T: D_{3} \rightarrow \mathbb{R}^{3}$ by

$$
T\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Note that

$$
T\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longrightarrow a=b=c=0
$$

and so

$$
\operatorname{ker}(T)=\left\{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right\}
$$

which shows that T is 1-1.
Also, if $\mathbf{x}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is any vector in \mathbb{R}^{3}, then

$$
T\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]=\mathbf{x}
$$

which shows that range $(T)=\mathbb{R}^{3}$. Thus, T is onto.
We conclude that T is an isomorphism.
(23) Note that

$$
V=\left\{A \in M_{33}: A^{T}=A\right\}
$$

and

$$
W=\left\{B \in M_{22}: B^{T}=-B\right\} .
$$

We observe that
$V=\left\{\left[\begin{array}{lll}a & b & c \\ b & e & f \\ c & f & s\end{array}\right]\right\}$
$=\operatorname{span}\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\right)$
It is also easy to see that these spanning matrices are linearly independent, and hence form a basis for V.

Similarly,

$$
\begin{aligned}
W & =\left\{\left[\begin{array}{rrr}
0 & b & c \\
-b & 0 & f \\
-c & -f & 0
\end{array}\right]\right\} \\
& =\operatorname{span}\left(\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right],\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\right)
\end{aligned}
$$

It is also easy to see that these spanning matrices are linearly independent, and hence form a basis for W.

We conclude that $\operatorname{dim}(V)=6$ and $\operatorname{dim}(W)=3$. So, by Theorem $6.25, V$ and W are not isomorphic.

