Homework Solutions - Week of November 4

Section 5.3:

(7) In the last homework set (Week of October 28), we found that W has the orthogonal basis

$$
\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
2
\end{array}\right]\right\} .
$$

We use \mathcal{B} to find the orthogonal decomposition of \mathbf{v}. We calculate

$$
\begin{aligned}
\operatorname{proj}_{W}(\mathbf{v}) & =\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}+\left(\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}}\right) \mathbf{v}_{\mathbf{2}} \\
& =\frac{0}{2} \mathbf{v}_{\mathbf{1}}+\frac{2}{9 / 2} \mathbf{v}_{\mathbf{2}} \\
& =\frac{4}{9} \mathbf{v}_{\mathbf{2}} \\
& =\left[\begin{array}{r}
-2 / 9 \\
2 / 9 \\
8 / 9
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{perp}_{W}(\mathbf{v}) & =\mathbf{v}-\operatorname{proj}_{W}(\mathbf{v}) \\
& =\left[\begin{array}{r}
38 / 9 \\
-38 / 9 \\
19 / 9
\end{array}\right]
\end{aligned}
$$

So, the orthogonal decomposition of \mathbf{v} with respect to W is

$$
\mathbf{v}=\operatorname{proj}_{W}(\mathbf{v})+\operatorname{perp}_{W}(\mathbf{v})=\left[\begin{array}{r}
-2 / 9 \\
2 / 9 \\
8 / 9
\end{array}\right]+\left[\begin{array}{r}
38 / 9 \\
-38 / 9 \\
19 / 9
\end{array}\right] .
$$

(8) In the last homework set (Week of October 28), we found that W has the orthogonal basis

$$
\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}
2 \\
-1 \\
1 \\
2
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}
0 \\
1 / 2 \\
-3 / 2 \\
1
\end{array}\right]\right\} .
$$

We use \mathcal{B} to find the orthogonal decomposition of \mathbf{v}. We calculate

$$
\begin{aligned}
\operatorname{proj}_{W}(\mathbf{v}) & =\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}+\left(\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}}\right) \mathbf{v}_{\mathbf{2}} \\
& =\frac{2}{10} \mathbf{v}_{\mathbf{1}}+\frac{4}{14 / 4} \mathbf{v}_{\mathbf{2}} \\
& =\frac{1}{5} \mathbf{v}_{\mathbf{1}}+\frac{8}{7} \mathbf{v}_{\mathbf{2}} \\
& =\left[\begin{array}{r}
2 / 5 \\
13 / 35 \\
-53 / 35 \\
54 / 35
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{perp}_{W}(\mathbf{v}) & =\mathbf{v}-\operatorname{proj}_{W}(\mathbf{v}) \\
& =\left[\begin{array}{r}
3 / 5 \\
127 / 35 \\
53 / 35 \\
16 / 35
\end{array}\right]
\end{aligned}
$$

So, the orthogonal decomposition of \mathbf{v} with respect to W is

$$
\mathbf{v}=\operatorname{proj}_{W}(\mathbf{v})+\operatorname{perp}_{W}(\mathbf{v})=\left[\begin{array}{r}
2 / 5 \\
13 / 35 \\
-53 / 35 \\
54 / 35
\end{array}\right]+\left[\begin{array}{r}
3 / 5 \\
127 / 35 \\
53 / 35 \\
16 / 35
\end{array}\right]
$$

(11) We start with a basis for \mathbb{R}^{3} which includes the given vector. Let

$$
\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right], \mathbf{x}_{\mathbf{2}}=\left[\begin{array}{c}
0 \\
35 \\
0
\end{array}\right], \mathbf{x}_{\mathbf{3}}=\left[\begin{array}{c}
1190 \\
0 \\
0
\end{array}\right]
$$

it is easily verified that the matrix whose columns are $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}$ and $\mathbf{x}_{\mathbf{3}}$ row reduces to the 3×3 identity matrix. Thus, by the Fundamental Theorem for Invertible Matrices, $\mathcal{B}=\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}\right\}$ is a basis for \mathbb{R}^{3}. We now apply GSOP to \mathcal{B} to obtain an orthogonal basis for \mathbb{R}^{3} which contains the given vector $\mathbf{x}_{\mathbf{1}}$.

Let

$$
\mathbf{v}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right]
$$

Now let

$$
\begin{aligned}
\mathbf{v}_{\mathbf{2}} & =\mathbf{x}_{\mathbf{2}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}} \\
& =\mathbf{x}_{\mathbf{2}}-\frac{35}{35} \mathbf{v}_{\mathbf{1}} \\
& =\mathbf{x}_{\mathbf{2}}-\mathbf{v}_{\mathbf{1}} \\
& =\left[\begin{array}{r}
-3 \\
34 \\
-5
\end{array}\right] .
\end{aligned}
$$

Finally, let

$$
\begin{aligned}
\mathbf{v}_{\mathbf{3}} & =\mathbf{x}_{\mathbf{3}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}-\left(\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{x}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}}\right) \mathbf{v}_{\mathbf{2}} \\
& =\mathbf{x}_{\mathbf{3}}-\frac{3570}{35} \mathbf{v}_{\mathbf{1}}-\frac{-3570}{1190} \mathbf{v}_{\mathbf{2}} \\
& =\mathbf{x}_{\mathbf{3}}-102 \mathbf{v}_{\mathbf{1}}+3 \mathbf{v}_{\mathbf{2}} \\
& =\left[\begin{array}{c}
875 \\
0 \\
-525
\end{array}\right] .
\end{aligned}
$$

The set $\mathcal{C}=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is an orthogonal basis for \mathbb{R}^{3} that contains the given vector.

Section 7.3:

(7) We need to find the least squares solution to the system

$$
\begin{array}{r}
a+b=0 \\
a+2 b=1 \\
a+3 b=5
\end{array}
$$

Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right]
$$

We calculate

$$
A^{T} A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
3 & 6 \\
6 & 14
\end{array}\right]
$$

Since $\operatorname{det}\left(A^{T} A\right)=6 \neq 0$, the matrix $A^{T} A$ is invertible and the vector we seek equals $\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$. It is easy to verify that

$$
\left(A^{T} A\right)^{-1}=\frac{1}{6}\left[\begin{array}{rr}
14 & -6 \\
-6 & 3
\end{array}\right]
$$

So,

$$
\begin{aligned}
\overline{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\frac{1}{6}\left[\begin{array}{rr}
14 & -6 \\
-6 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
-3 \\
5 / 2
\end{array}\right]
\end{aligned}
$$

So, the least squares approximating line is

$$
y=-3+\frac{5}{2} x
$$

The corresponding least squares error is:

$$
\|\mathbf{e}\|=\|\mathbf{b}-A \overline{\mathbf{x}}\|=\left\|\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right]-\left[\begin{array}{r}
-1 / 2 \\
2 \\
9 / 2
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
1 / 2 \\
-1 \\
1 / 2
\end{array}\right]\right\|=\sqrt{3 / 2} \approx 1.225
$$

(8) We need to find the least squares solution to the system

$$
\begin{array}{r}
a+b=5 \\
a+2 b=3 \\
a+3 b=2
\end{array}
$$

Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right]
$$

We calculate

$$
A^{T} A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
3 & 6 \\
6 & 14
\end{array}\right]
$$

Since $\operatorname{det}\left(A^{T} A\right)=6 \neq 0$, the matrix $A^{T} A$ is invertible and the vector we seek equals $\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$. It is easy to verify that

$$
\left(A^{T} A\right)^{-1}=\frac{1}{6}\left[\begin{array}{rr}
14 & -6 \\
-6 & 3
\end{array}\right]
$$

So,

$$
\begin{aligned}
\overline{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\frac{1}{6}\left[\begin{array}{rr}
14 & -6 \\
-6 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right] \\
& =\left[\begin{array}{r}
19 / 6 \\
-3 / 2
\end{array}\right]
\end{aligned}
$$

So, the least squares approximating line is

$$
y=\frac{19}{6}-\frac{3}{2} x
$$

The corresponding least squares error is:

$$
\|\mathbf{e}\|=\|\mathbf{b}-A \overline{\mathbf{x}}\|=\left\|\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right]-\left[\begin{array}{r}
-5 / 3 \\
1 / 6 \\
-4 / 3
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
10 / 3 \\
17 / 6 \\
10 / 3
\end{array}\right]\right\|=\sqrt{1089 / 36}=\frac{33}{6}=5.5
$$

(11) We need to find the least squares solution to the system

$$
\begin{aligned}
a-5 b & =-1 \\
a+0 b & =1 \\
a+5 b & =2 \\
a+10 b & =4
\end{aligned}
$$

Let

$$
A=\left[\begin{array}{rr}
1 & -5 \\
1 & 0 \\
1 & 5 \\
1 & 10
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{r}
-1 \\
1 \\
2 \\
4
\end{array}\right]
$$

We calculate

$$
A^{T} A=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-5 & 0 & 5 & 10
\end{array}\right]\left[\begin{array}{rr}
1 & -5 \\
1 & 0 \\
1 & 5 \\
1 & 10
\end{array}\right]=\left[\begin{array}{cc}
4 & 10 \\
10 & 150
\end{array}\right]
$$

Since $\operatorname{det}\left(A^{T} A\right)=500 \neq 0$, the matrix $A^{T} A$ is invertible and the vector we seek equals $\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$. It is easy to verify that

$$
\left(A^{T} A\right)^{-1}=\frac{1}{500}\left[\begin{array}{rr}
150 & -10 \\
-10 & 4
\end{array}\right]
$$

So,

$$
\begin{aligned}
\overline{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\frac{1}{500}\left[\begin{array}{rr}
150 & -10 \\
-10 & 4
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-5 & 0 & 5 & 10
\end{array}\right]\left[\begin{array}{r}
-1 \\
1 \\
2 \\
4
\end{array}\right] \\
& =\left[\begin{array}{l}
7 / 10 \\
8 / 25
\end{array}\right]
\end{aligned}
$$

So, the least squares approximating line is

$$
y=\frac{7}{10}+\frac{8}{25} x
$$

The corresponding least squares error is:

$$
\|\mathbf{e}\|=\|\mathbf{b}-A \overline{\mathbf{x}}\|=\left\|\left[\begin{array}{r}
-1 \\
1 \\
2 \\
4
\end{array}\right]-\left[\begin{array}{r}
-9 / 10 \\
7 / 10 \\
23 / 10 \\
39 / 10
\end{array}\right]\right\|=\left\|\left[\begin{array}{r}
-1 / 10 \\
3 / 10 \\
-3 / 10 \\
1 / 10
\end{array}\right]\right\|=\sqrt{20 / 100} \approx 0.447
$$

(12) We need to find the least squares solution to the system

$$
\begin{array}{r}
a-5 b=3 \\
a+0 b=3 \\
a+5 b=2 \\
a+10 b=0
\end{array}
$$

Let

$$
A=\left[\begin{array}{rr}
1 & -5 \\
1 & 0 \\
1 & 5 \\
1 & 10
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{l}
3 \\
3 \\
2 \\
0
\end{array}\right]
$$

We calculate

$$
A^{T} A=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-5 & 0 & 5 & 10
\end{array}\right]\left[\begin{array}{rr}
1 & -5 \\
1 & 0 \\
1 & 5 \\
1 & 10
\end{array}\right]=\left[\begin{array}{cc}
4 & 10 \\
10 & 150
\end{array}\right]
$$

Since $\operatorname{det}\left(A^{T} A\right)=500 \neq 0$, the matrix $A^{T} A$ is invertible and the vector we seek equals $\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$. It is easy to verify that

$$
\left(A^{T} A\right)^{-1}=\frac{1}{500}\left[\begin{array}{rr}
150 & -10 \\
-10 & 4
\end{array}\right] .
$$

So,

$$
\begin{aligned}
\overline{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\frac{1}{500}\left[\begin{array}{rr}
150 & -10 \\
-10 & 4
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-5 & 0 & 5 & 10
\end{array}\right]\left[\begin{array}{l}
3 \\
3 \\
2 \\
0
\end{array}\right] \\
& =\left[\begin{array}{r}
5 / 2 \\
-1 / 5
\end{array}\right]
\end{aligned}
$$

So, the least squares approximating line is

$$
y=\frac{5}{2}-\frac{1}{5} x
$$

The corresponding least squares error is:

$$
\|\mathbf{e}\|=\|\mathbf{b}-A \overline{\mathbf{x}}\|=\left\|\left[\begin{array}{l}
3 \\
3 \\
2 \\
0
\end{array}\right]-\left[\begin{array}{c}
7 / 2 \\
5 / 2 \\
3 / 2 \\
1 / 2
\end{array}\right]\right\|=\left\|\left[\begin{array}{r}
-1 / 2 \\
1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right]\right\|=\sqrt{1}=1 .
$$

(19) We calculate

$$
A^{T} A=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
11 & 6 \\
6 & 6
\end{array}\right]
$$

and

$$
A^{T} \mathbf{b}=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

Thus, the normal equations $A^{T} A \overline{\mathbf{x}}=A^{T} \mathbf{b}$ are

$$
\left[\begin{array}{cc}
11 & 6 \\
6 & 6
\end{array}\right] \overline{\mathbf{x}}=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

Since $\operatorname{det}\left(A^{T} A\right)=1 / 30 \neq 0$, the matrix $A^{T} A$ is invertible. So, the least squares solution is

$$
\begin{aligned}
\overline{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\frac{1}{30}\left[\begin{array}{rr}
6 & -6 \\
-6 & 11
\end{array}\right]\left[\begin{array}{l}
5 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
1 / 5 \\
7 / 15
\end{array}\right]
\end{aligned}
$$

(20) We calculate

$$
A^{T} A=\left[\begin{array}{rrr}
3 & 1 & 2 \\
-2 & -2 & 1
\end{array}\right]\left[\begin{array}{rr}
3 & -2 \\
1 & -2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{rr}
14 & -6 \\
-6 & 9
\end{array}\right]
$$

and

$$
A^{T} \mathbf{b}=\left[\begin{array}{rrr}
3 & 1 & 2 \\
-2 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
6 \\
-3
\end{array}\right]
$$

Thus, the normal equations $A^{T} A \overline{\mathbf{x}}=A^{T} \mathbf{b}$ are

$$
\left[\begin{array}{rr}
14 & -6 \\
-6 & 9
\end{array}\right] \overline{\mathbf{x}}=\left[\begin{array}{r}
6 \\
-3
\end{array}\right]
$$

Since $\operatorname{det}\left(A^{T} A\right)=1 / 90 \neq 0$, the matrix $A^{T} A$ is invertible. So, the least squares
solution is

$$
\begin{aligned}
\overline{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\frac{1}{90}\left[\begin{array}{rr}
9 & 6 \\
6 & 14
\end{array}\right]\left[\begin{array}{r}
6 \\
-3
\end{array}\right] \\
& =\left[\begin{array}{r}
2 / 5 \\
-1 / 15
\end{array}\right]
\end{aligned}
$$

(23) We calculate

$$
A^{T} A=\left[\begin{array}{rrrr}
1 & 1 & 0 & 1 \\
1 & 0 & -1 & -1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & -1 & 1 & 1 \\
1 & -1 & 1 & 0
\end{array}\right]=\left[\begin{array}{rrrr}
3 & 0 & 2 & 1 \\
0 & 3 & -2 & -1 \\
2 & -2 & 3 & 2 \\
1 & -1 & 2 & 2
\end{array}\right]
$$

and

$$
A^{T} \mathbf{b}=\left[\begin{array}{rrrr}
1 & 1 & 0 & 1 \\
1 & 0 & -1 & -1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{r}
1 \\
-3 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{r}
2 \\
-5 \\
3 \\
-1
\end{array}\right]
$$

Thus, we need to solve the normal equations $A^{T} A \overline{\mathbf{x}}=A^{T} \mathbf{b}$:

$$
\left[\begin{array}{rrrr}
3 & 0 & 2 & 1 \\
0 & 3 & -2 & -1 \\
2 & -2 & 3 & 2 \\
1 & -1 & 2 & 2
\end{array}\right] \overline{\mathbf{x}}=\left[\begin{array}{r}
2 \\
-5 \\
3 \\
-1
\end{array}\right]
$$

To solve for the least squares solutions $\overline{\mathbf{x}}$ we form the augmented matrix and rowreduce:

$$
\left[\begin{array}{rrrr|r}
3 & 0 & 2 & 1 & \mid \\
0 & 3 & -2 & -1 & -5 \\
2 & -2 & 3 & 2 & 3 \\
1 & -1 & 2 & 2 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{rrrr|r}
1 & -1 & 2 & 2 & -1 \\
0 & 3 & -4 & -5 & 5 \\
0 & 0 & 1 & 2 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Since there are free variables, we see that there are infinitely many least squares solutions. Solving we let $x_{4}=t$ and so $x_{3}=-2 t-5, x_{2}=-t-5$ and $x_{1}=t+4$.

Thus, the set of least squares solutions is:

$$
\left\{\left[\begin{array}{c}
4+t \\
-5-t \\
-5-2 t \\
t
\end{array}\right]: t \in \mathbb{R}\right\}
$$

(25) Let

$$
A=\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & -1 & 2 \\
3 & 2 & -1 \\
-1 & 0 & 1
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{c}
2 \\
6 \\
11 \\
0
\end{array}\right]
$$

Then the given system is equivalent to $A \mathbf{x}=\mathbf{b}$. We calculate

$$
A^{T} A=\left[\begin{array}{rrrr}
1 & 0 & 3 & -1 \\
1 & -1 & 2 & 0 \\
-1 & 2 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & -1 & 2 \\
3 & 2 & -1 \\
-1 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
11 & 7 & -5 \\
7 & 6 & -5 \\
-5 & -5 & 7
\end{array}\right]
$$

and

$$
A^{T} \mathbf{b}=\left[\begin{array}{rrrr}
1 & 0 & 3 & -1 \\
1 & -1 & 2 & 0 \\
-1 & 2 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
6 \\
11 \\
0
\end{array}\right]=\left[\begin{array}{c}
35 \\
18 \\
-1
\end{array}\right]
$$

Using Maple, we see that the matrix $A^{T} A$ is invertible. So, the least squares solution
is

$$
\begin{aligned}
\overline{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\left[\begin{array}{rrr}
17 / 44 & -6 / 11 & -5 / 44 \\
-6 / 11 & 13 / 11 & 5 / 11 \\
-5 / 44 & 5 / 11 & 17 / 44
\end{array}\right]\left[\begin{array}{r}
35 \\
18 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
42 / 11 \\
19 / 11 \\
42 / 11
\end{array}\right]
\end{aligned}
$$

(26) Let

$$
A=\left[\begin{array}{rrr}
2 & 3 & 1 \\
1 & 1 & 1 \\
-1 & 1 & -1 \\
0 & 2 & 1
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{c}
21 \\
7 \\
14 \\
0
\end{array}\right]
$$

Then the given system is equivalent to $A \mathbf{x}=\mathbf{b}$. We calculate

$$
A^{T} A=\left[\begin{array}{rrrr}
2 & 1 & -1 & 0 \\
3 & 1 & 1 & 2 \\
1 & 1 & -1 & 1
\end{array}\right]\left[\begin{array}{rcr}
2 & 3 & 1 \\
1 & 1 & 1 \\
-1 & 1 & -1 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
6 & 6 & 4 \\
6 & 15 & 5 \\
4 & 5 & 4
\end{array}\right]
$$

and

$$
A^{T} \mathbf{b}=\left[\begin{array}{rrrr}
2 & 1 & -1 & 0 \\
3 & 1 & 1 & 2 \\
1 & 1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
21 \\
7 \\
14 \\
0
\end{array}\right]=\left[\begin{array}{c}
35 \\
84 \\
14
\end{array}\right]
$$

Using Maple, we see that the matrix $A^{T} A$ is invertible. So, the least squares solution
is

$$
\begin{aligned}
\overline{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\left[\begin{array}{rrr}
35 / 66 & -2 / 33 & -5 / 11 \\
-2 / 33 & 4 / 33 & -1 / 11 \\
-5 / 11 & -1 / 11 & 9 / 11
\end{array}\right]\left[\begin{array}{l}
35 \\
84 \\
14
\end{array}\right] \\
& =\left[\begin{array}{r}
469 / 66 \\
224 / 33 \\
-133 / 11
\end{array}\right]
\end{aligned}
$$

(29) We have the data points $(20,14.5),(40,31),(48,36),(60,45.5),(80,59),(100,73.5)$. We need to find the least squares solution to the system

$$
\begin{aligned}
a+20 b & =14.5 \\
a+40 b & =31 \\
a+48 b & =36 \\
a+60 & =45.5 \\
a+80 b & =59 \\
a+100 b & =73.5
\end{aligned}
$$

Let

$$
A=\left[\begin{array}{cc}
1 & 20 \\
1 & 40 \\
1 & 48 \\
1 & 60 \\
1 & 80 \\
1 & 100
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{r}
14.5 \\
31 \\
36 \\
45.5 \\
59 \\
73.5
\end{array}\right]
$$

We calculate

$$
A^{T} A=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
20 & 40 & 48 & 60 & 80 & 100
\end{array}\right]\left[\begin{array}{cc}
1 & 20 \\
1 & 40 \\
1 & 48 \\
1 & 60 \\
1 & 80 \\
1 & 100
\end{array}\right]=\left[\begin{array}{cc}
6 & 348 \\
342 & 24304
\end{array}\right]
$$

Since $\operatorname{det}\left(A^{T} A\right) \neq 0$, the matrix $A^{T} A$ is invertible and the vector we seek equals $\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$. We have

$$
\overline{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

$$
\begin{aligned}
& =\left[\begin{array}{rr}
1519 / 1545 & -29 / 2060 \\
-29 / 2060 & 1 / 4120
\end{array}\right]\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
20 & 40 & 48 & 60 & 80 & 100
\end{array}\right]\left[\begin{array}{r}
14.5 \\
31 \\
36 \\
45.5 \\
59 \\
73.5
\end{array}\right] \\
& =\left[\begin{array}{c}
0.9184466019417 \\
0.729854368932
\end{array}\right]
\end{aligned}
$$

So, the least squares approximating line is

$$
b=0.92+0.73 h
$$

(32) (a) We need to solve the system

$$
\begin{aligned}
s_{0}+0.5 v_{0}+0.125 g & =11 \\
s_{0}+v_{0}+0.5 g & =17 \\
s_{0}+1.5 v_{0}+1.125 g & =21 \\
s_{0}+2 v_{0}+2 g & =23 \\
s_{0}+3 v_{0}+4.5 g & =18
\end{aligned}
$$

Let

$$
A=\left[\begin{array}{ccc}
1 & 0.5 & 0.125 \\
1 & 1 & 0.5 \\
1 & 1.5 & 1.125 \\
1 & 2 & 2 \\
1 & 3 & 4.5
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{c}
11 \\
17 \\
21 \\
23 \\
18
\end{array}\right]
$$

We calculate

$$
A^{T} A=\left[\begin{array}{ccc}
5 & 8 & 8.25 \\
8 & 16.5 & 19.75 \\
8.25 & 19.75 & 25.78125
\end{array}\right]
$$

Since $\operatorname{det}\left(A^{T} A\right) \neq 0$, the matrix $A^{T} A$ is invertible and the vector we seek equals $\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$. We have (using Maple)

$$
\begin{aligned}
\overline{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\left[\begin{array}{c}
1.92 \\
20.31 \\
-9.94
\end{array}\right]
\end{aligned}
$$

So, the least squares approximating quadratic is

$$
s(t)=1.92+20.31 t-\frac{9.94}{2} t^{2}
$$

(b) $s_{0} \approx 1.92 \mathrm{~m}, v_{0} \approx 20.31 \mathrm{~m} / \mathrm{s}$ and $g \approx-9.94 \mathrm{~m} / \mathrm{s}^{2}$
(c) The object will hit the ground when $s=0$. We use Maple to factor $s(t)$ as

$$
s(t)=-4.97(t+0.09244349461)(t-4.178962609)
$$

Since t cannot be negative, we conclude that the object hits the ground at approximately $t=4.12 \mathrm{~s}$.

Section 6.1:

(1) The set $V=\left\{\left[\begin{array}{l}x \\ x\end{array}\right]: x \in \mathbb{R}\right\}$ is a vector space. Axioms $2,3,7,8,9$, and 10 all hold on the larger vector space \mathbb{R}^{2}, and so V inherits these properties. We verify axioms $1,4,5$ and 6 :

Note that

$$
\left[\begin{array}{l}
a \\
a
\end{array}\right]+\left[\begin{array}{l}
b \\
b
\end{array}\right]=\left[\begin{array}{l}
a+b \\
a+b
\end{array}\right] \in V
$$

showing axiom (1) holds.
We have

$$
\left[\begin{array}{l}
a \\
a
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
a
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in V
$$

which verifies axiom (4).
We have

$$
\left[\begin{array}{l}
a \\
a
\end{array}\right]+\left[\begin{array}{c}
-a \\
-a
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
-a \\
-a
\end{array}\right] \in V
$$

which verifies axiom (5).
Note that for any scalar c

$$
c\left[\begin{array}{l}
a \\
a
\end{array}\right]=\left[\begin{array}{l}
c a \\
c a
\end{array}\right] \in V
$$

showing axiom (6) holds.
(2) $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right\}$ with the usual vector addition and scalar multiplication is not a vector space. Axioms 5 and 6 do not hold. For example,

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

is in V, but the only vector for which $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$ is

$$
\left[\begin{array}{c}
-1 \\
-1
\end{array}\right]
$$

which is not in V.
Also, $-3 \mathbf{u}$ is not in V.
(3) $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}: x y \geq 0\right\}$ with the usual vector addition and scalar multiplication is not a vector space. Axiom 1 does not hold. For example,

$$
\mathbf{u}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \in V
$$

and

$$
\mathbf{v}=\left[\begin{array}{l}
0 \\
8
\end{array}\right] \in V
$$

but

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{r}
-1 \\
7
\end{array}\right] \notin V
$$

(5) \mathbb{R}^{2} with the usual addition but the given scalar multiplication is not a vector space. Axiom 8 does not hold. For example,

$$
(2+3)\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
1
\end{array}\right] \neq 2\left[\begin{array}{l}
1 \\
1
\end{array}\right]+3\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
2
\end{array}\right] .
$$

(9) The set $V=\left\{\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]: a, b, c \in \mathbb{R}\right\}$ is a vector space. Axioms $2,3,7,8,9$, and 10 all hold on the larger vector space \mathbb{R}^{2}, and so V inherits these properties. We verify axioms $1,4,5$ and 6 :

Note that

$$
\left[\begin{array}{cc}
a_{1} & b_{1} \\
0 & c_{1}
\end{array}\right]+\left[\begin{array}{cc}
a_{2} & b_{2} \\
0 & c_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}+a_{2} & b_{1}+b_{2} \\
0 & c_{1}+c_{2}
\end{array}\right] \in V
$$

showing axiom (1) holds.

We have

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \in V
$$

which verifies axiom (4).
We have

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]+\left[\begin{array}{rr}
-a & -b \\
0 & -c
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{rr}
-a & -b \\
0 & -c
\end{array}\right] \in V
$$

which verifies axiom (5).
Note that for any scalar s

$$
s\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]=\left[\begin{array}{cc}
s a & s b \\
0 & s c
\end{array}\right] \in V
$$

showing axiom (6) holds.
(25) W is a subspace of V. To see this, let \mathbf{x} and \mathbf{y} be two vectors in W. Then \mathbf{x} and \mathbf{y} are of the form

$$
\mathbf{x}=\left[\begin{array}{r}
a \\
-a \\
2 a
\end{array}\right]
$$

and

$$
\mathbf{y}=\left[\begin{array}{r}
b \\
-b \\
2 b
\end{array}\right] .
$$

So,

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{c}
a+b \\
-(a+b) \\
2(a+b)
\end{array}\right] \in W
$$

Also, let $c \in \mathbb{R}$ and $\mathbf{x} \in W$ be as above. Then

$$
c \mathbf{x}=\left[\begin{array}{r}
c a \\
-c a \\
2 c a
\end{array}\right] \in W
$$

So, by Theorem $6.2, W$ is a subspace of \mathbb{R}^{3}.
(26) W is not a subspace of \mathbb{R}^{3}. For example, note that

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right] \in W
$$

and

$$
\mathbf{y}=\left[\begin{array}{l}
2 \\
2 \\
5
\end{array}\right] \in W
$$

but

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{l}
3 \\
3 \\
8
\end{array}\right] \notin W
$$

since $8 \neq 3+3+1$.
(35) W is a subspace of \mathcal{P}_{2}. To see this, let f and g be in W. Then

$$
\begin{aligned}
f & =a+b x+c x^{2} \\
g & =o+p x+q x^{2}
\end{aligned}
$$

where a, b, c, o, p, q are scalars such that $a+b+c=0$ and $o+p+q=0$. So

$$
f+g=(a+o)+(b+p) x+(c+q) x^{2}
$$

and

$$
(a+o)+(b+p)+(c+q)=(a+b+c)+(o+p+q)=0+0=0
$$

This shows that $f+g \in W$.
Also, let m be a scalar and $f \in W$ as above. Then

$$
m f=m a+m b x+m c x^{2}
$$

where

$$
m a+m b+m c=m(a+b+c)=m(0)=0
$$

We conclude that $m f \in W$.
(36) W is not a subspace of \mathcal{P}_{2}. To see this, note that

$$
f=0+x+x^{2}
$$

and

$$
g=1+0 x+x^{2}
$$

are both in W. But,

$$
f+g=1+x+2 x^{2} \notin W
$$

since $1(1)(2)=2 \neq 0$.
(61) Let $a+b x+c x^{2} \in \mathcal{P}_{2}$. We need to determine if there exist scalars c_{1}, c_{2}, c_{3} such that

$$
a+b x+c x^{2}=c_{1}(1+x)+c_{2}\left(x+x^{2}\right)+c_{3}\left(1+x^{2}\right)
$$

This is true iff

$$
a+b x+c x^{2}=\left(c_{1}+c_{3}\right)+\left(c_{1}+c_{2}\right) x+\left(c_{2}+c_{3}\right) x^{2}
$$

Comparing coefficients, we see that we must have

$$
\begin{aligned}
& c_{1}+c_{3}=a \\
& c_{1}+c_{2}=b \\
& c_{2}+c_{3}=c
\end{aligned}
$$

We form the associated augmented matrix and row-reduce:

$$
\left[\begin{array}{lll|r}
1 & 0 & 1 & a \\
1 & 1 & 0 & b \\
0 & 1 & 1 & c
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 0 & 1 & a \\
0 & 1 & -1 & b-a \\
0 & 0 & 2 & c-b+a
\end{array}\right]
$$

We see that the system is always consistent. Thus, yes the given polynomials span \mathcal{P}_{2}.
(62) Let $a+b x+c x^{2} \in \mathcal{P}_{2}$. We need to determine if there exist scalars c_{1}, c_{2}, c_{3} such that

$$
a+b x+c x^{2}=c_{1}\left(1+x+2 x^{2}\right)+c_{2}\left(2+x+2 x^{2}\right)+c_{3}\left(-1+x+2 x^{2}\right)
$$

This is true iff

$$
a+b x+c x^{2}=\left(c_{1}+2 c_{2}-c_{3}\right)+\left(c_{1}+c_{2}+c_{3}\right) x+\left(2 c_{1}+2 c_{2}+2 c_{3}\right) x^{2}
$$

Comparing coefficients, we see that we must have

$$
\begin{aligned}
c_{1}+2 c_{2}-c_{3} & =a \\
c_{1}+c_{2}+c_{3} & =b \\
2 c_{1}+2 c_{2}+2 c_{3} & =c
\end{aligned}
$$

We form the associated augmented matrix and start to row-reduce:

$$
\left[\begin{array}{rrr|r}
1 & 2 & -1 & a \\
1 & 1 & 1 & b \\
2 & 2 & 2 & c
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 2 & -1 & a \\
1 & 1 & 1 & b \\
0 & 0 & 0 & c-2 b
\end{array}\right]
$$

We see that the system is inconsistent. Thus, no the given polynomials do not span \mathcal{P}_{2}.

