Homework Solutions - Week of October 28

Section 5.1:

(16) The columns of the given matrix A are easily seen to be orthonormal. Thus, the matrix is orthogonal. By Theorem 5.5,

$$
A^{-1}=A^{T}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(19) Let A be the given matrix. Then

$$
\begin{aligned}
A^{T} A & =\left[\begin{array}{ccc}
\cos \theta \sin \theta & \cos ^{2} \theta & \sin \theta \\
-\cos \theta & \sin \theta & 0 \\
-\sin ^{2} \theta & -\cos \theta \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta \sin \theta & -\cos \theta & -\sin ^{2} \theta \\
\cos ^{2} \theta & \sin \theta & -\cos \theta \sin \theta \\
\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

To see this, you will need to use the trig identity $\sin ^{2} \theta+\cos ^{2} \theta=1$. So, for example,

$$
\begin{aligned}
\cos ^{2} \theta \sin ^{2} \theta+\cos ^{4} \theta+\sin ^{2} \theta & =\cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\sin ^{2} \theta \\
& =\cos ^{2} \theta+\sin ^{2} \theta=1 \\
-\cos \theta \sin ^{3} \theta-\cos ^{3} \theta \sin \theta+\cos \theta \sin \theta & =\cos \theta \sin \theta\left(-\sin ^{2} \theta-\cos ^{2} \theta+1\right)=0
\end{aligned}
$$

We see that $A^{-1}=A^{T}$. So, by Theorem 5.5 A is orthogonal and

$$
A^{-1}=A^{T}=\left[\begin{array}{ccc}
\cos \theta \sin \theta & \cos ^{2} \theta & \sin \theta \\
-\cos \theta & \sin \theta & 0 \\
-\sin ^{2} \theta & -\cos \theta \sin \theta & \cos \theta
\end{array}\right]
$$

(20) The columns of the given matrix A are easily seen to be orthonormal. Thus, the matrix is orthogonal. By Theorem 5.5,

$$
A^{-1}=A^{T}=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]
$$

(26) Suppose Q is an orthogonal matrix. Let P be a matrix obtained from Q by interchanging rows of Q.

Since Q is orthogonal, the row vectors of Q form an orthonormal set (see Theorem 5.7). Since changing the order of a list of vectors doesn't change the length of the vectors nor the orthogonality of the set, the row vectors of P form an orthonormal set. Thus, the column vectors of P^{T} form an orthonormal set. We conclude, using the definition of orthogonal matrices, that P^{T} is an orthogonal matrix. Applying Theorem 5.5 to P^{T} yields that

$$
\left(P^{T}\right)^{-1}=\left(P^{T}\right)^{T}=P .
$$

Therefore,

$$
P^{-1}=\left[\left(P^{T}\right)^{-1}\right]^{-1}=P^{T} .
$$

Now applying Theorem 5.5 to P shows that P is an orthogonal matrix.

Section 5.2:

(1) Observe that

$$
W=\left\{\left[\begin{array}{c}
x \\
2 x
\end{array}\right] \in \mathbb{R}^{2}\right\}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) .
$$

That is W equals the column space of the 2×1 matrix

$$
A=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

By Theorem 5.10, $W^{\perp}=\operatorname{null}\left(A^{T}\right)$. We have

$$
A^{T}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] .
$$

After we solve the system $A^{T} \mathbf{x}=\mathbf{0}$, we see that

$$
\begin{aligned}
W^{\perp}=\operatorname{null}\left(A^{T}\right) & =\left\{\mathbf{x}=\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]: t \in \mathbb{R}\right\} \\
& =\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: x+2 y=0\right\}
\end{aligned}
$$

Thus, a basis for W^{\perp} is

$$
\mathcal{B}^{\perp}=\left\{\left[\begin{array}{r}
-2 \\
1
\end{array}\right]\right\} .
$$

(2) Observe that

$$
W=\left\{\left[\begin{array}{c}
x \\
(-3 / 4) x
\end{array}\right] \in \mathbb{R}^{2}\right\}=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
-3 / 4
\end{array}\right]\right) .
$$

That is W equals the column space of the 2×1 matrix

$$
A=\left[\begin{array}{c}
1 \\
-3 / 4
\end{array}\right]
$$

By Theorem 5.10, $W^{\perp}=\operatorname{null}\left(A^{T}\right)$. We have

$$
A^{T}=\left[\begin{array}{ll}
1 & -3 / 4
\end{array}\right] .
$$

After we solve the system $A^{T} \mathbf{x}=\mathbf{0}$, we see that

$$
\begin{aligned}
W^{\perp}=\operatorname{null}\left(A^{T}\right) & =\left\{\mathbf{x}=\left[\begin{array}{c}
(3 / 4) t \\
t
\end{array}\right]: t \in \mathbb{R}\right\} \\
& =\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: x-(3 / 4) y=0\right\}
\end{aligned}
$$

Thus, a basis for W^{\perp} is

$$
\mathcal{B}^{\perp}=\left\{\left[\begin{array}{c}
3 / 4 \\
1
\end{array}\right]\right\} .
$$

(3) Observe that

$$
W=\left\{\left[\begin{array}{c}
x \\
y \\
x+y
\end{array}\right] \in \mathbb{R}^{3}\right\}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right) .
$$

That is W equals the column space of the 3×2 matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

By Theorem 5.10, $W^{\perp}=\operatorname{null}\left(A^{T}\right)$. We have

$$
A^{T}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

After we solve the system $A^{T} \mathbf{x}=\mathbf{0}$, we see that

$$
\begin{aligned}
W^{\perp}=\operatorname{null}\left(A^{T}\right) & =\left\{\mathbf{x}=\left[\begin{array}{r}
-t \\
-t \\
t
\end{array}\right]: t \in \mathbb{R}\right\} \\
& =\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x=t, y=t, z=-t\right\}
\end{aligned}
$$

Thus, a basis for W^{\perp} is

$$
\mathcal{B}^{\perp}=\left\{\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]\right\} .
$$

(6) Observe that

$$
W=\left\{\left[\begin{array}{r}
2 t \\
2 t \\
-t
\end{array}\right] \in \mathbb{R}^{3}\right\}=\operatorname{span}\left(\left[\begin{array}{r}
2 \\
2 \\
-1
\end{array}\right]\right) .
$$

That is W equals the column space of the 3×1 matrix

$$
A=\left[\begin{array}{r}
2 \\
2 \\
-1
\end{array}\right] .
$$

By Theorem 5.10, $W^{\perp}=\operatorname{null}\left(A^{T}\right)$. We have

$$
A^{T}=\left[\begin{array}{lll}
2 & 2 & -1
\end{array}\right] .
$$

After we solve the system $A^{T} \mathbf{x}=\mathbf{0}$, we see that

$$
\begin{aligned}
W^{\perp}=\operatorname{null}\left(A^{T}\right) & =\left\{\mathbf{x}=\left[\begin{array}{c}
-s+(t / 2) \\
s \\
t
\end{array}\right]: s, t \in \mathbb{R}\right\} \\
& =\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x=-s+(t / 2), y=s, z=t\right\}
\end{aligned}
$$

Thus, a basis for W^{\perp} is

$$
\mathcal{B}^{\perp}=\left\{\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 / 2 \\
0 \\
1
\end{array}\right]\right\} .
$$

(7) We begin by finding RREF(A):

$$
A \longrightarrow \operatorname{RREF}(A)=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that a basis for $\operatorname{row}(A)$ is

$$
\left\{\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & -2
\end{array}\right]\right\} .
$$

By solving the system $A \mathbf{x}=\mathbf{0}$, we find that $x_{1}=-x_{3}=-t, x_{2}=2 x_{3}=2 t, x_{3}=$ t. So, a basis for $\operatorname{null}(A)$ is

$$
\left\{\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right]\right\}
$$

Note that

$$
\begin{aligned}
1(-1)+(0)(2)+(1)(1) & =0 \\
(0)(-1)+(1)(2)+(-2)(1) & =0
\end{aligned}
$$

That is, the basis vectors for $\operatorname{row}(A)$ are orthogonal to the basis vectors for $\operatorname{null}(A)$. This is enough to show that every vector in $\operatorname{row}(A)$ is orthogonal to every vector in $\operatorname{null}(A)$.
(9) Using the $\operatorname{RREF}(\mathrm{A})$ from exercise 7, we see that a basis for $\operatorname{col}(A)$ is

$$
\left\{\left[\begin{array}{r}
1 \\
5 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
1 \\
-1
\end{array}\right]\right\}
$$

To find a basis for $\operatorname{null}\left(A^{T}\right)$, we need to row-reduce A^{T} :

$$
A^{T}=\left[\begin{array}{rrrr}
1 & 5 & 0 & -1 \\
-1 & 2 & 1 & -1 \\
3 & 1 & -2 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{rrrr}
1 & 5 & 0 & -1 \\
0 & 7 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By solving $A^{T} \mathbf{x}=\mathbf{0}$, we find $x_{1}=5 / 7 t-3 / 7 s, x_{2}=-t / 7+2 / 7 s, x_{3}=t, x_{4}=s$. So, a basis for $\operatorname{null}\left(A^{T}\right)$ is

$$
\left\{\left[\begin{array}{r}
5 \\
-1 \\
7 \\
0
\end{array}\right],\left[\begin{array}{r}
-3 \\
2 \\
0 \\
7
\end{array}\right]\right\} .
$$

Note that

$$
\begin{array}{r}
(1)(5)+(5)(-1)+(0)(7)+(-1)(0)=0 \\
(-1)(5)+(2)(-1)+(1)(7)+(-1)(0)=0 \\
(1)(-3)+(5)(2)+(0)(0)+(-1)(7)=0 \\
(-1)(-3)+(2)(2)+(1)(0)+(-1)(7)=0
\end{array}
$$

That is, the basis vectors for $\operatorname{col}(A)$ are orthogonal to the basis vectors for $\operatorname{null}\left(A^{T}\right)$. This is enough to show that every vector in $\operatorname{col}(A)$ is orthogonal to every vector in $\operatorname{null}\left(A^{T}\right)$.
(11) We have that

$$
W=\operatorname{span}\left(\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]\right)=\operatorname{col}(A)
$$

where

$$
A=\left[\begin{array}{rr}
2 & 4 \\
1 & 0 \\
-2 & 1
\end{array}\right]
$$

So, by Theorem 5.10, $W^{\perp}=\operatorname{null}\left(A^{T}\right)$. We have

$$
A^{T}=\left[\begin{array}{rrr}
2 & 1 & -2 \\
4 & 0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
2 & 1 & -2 \\
0 & 2 & -5
\end{array}\right]
$$

Thus, when we solve the system $A^{T} \mathbf{x}=\mathbf{0}$, we have $x_{1}=-1 / 4 t, x_{2}=5 / 2 t, x_{3}=$ t. So, a basis for $W^{\perp}=\operatorname{null}\left(A^{T}\right)$ is

$$
\left\{\left[\begin{array}{r}
1 \\
-10 \\
-4
\end{array}\right]\right\} .
$$

(12) We have that

$$
W=\operatorname{span}\left(\left[\begin{array}{r}
1 \\
-1 \\
3 \\
-2
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
-2 \\
1
\end{array}\right]\right)=\operatorname{col}(A)
$$

where

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
3 & -2 \\
-2 & 1
\end{array}\right]
$$

So, by Theorem 5.10, $W^{\perp}=\operatorname{null}\left(A^{T}\right)$. We have

$$
A^{T}=\left[\begin{array}{rrrr}
1 & -1 & 3 & -2 \\
0 & 1 & -2 & 1
\end{array}\right]
$$

Thus, when we solve the system $A^{T} \mathbf{x}=\mathbf{0}$, we have $x_{1}=x_{2}-3 x_{3}+2 x_{4}=$ $-s+t, x_{2}=2 x_{3}-x_{4}=2 s-t, x_{3}=s, x_{4}=t$. So, a basis for $W^{\perp}=\operatorname{null}\left(A^{T}\right)$ is

$$
\left\{\left[\begin{array}{r}
-1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

(16) By definition,

$$
\operatorname{proj}_{W}(\mathbf{v})=\left(\frac{\mathbf{u}_{\mathbf{1}} \cdot \mathbf{v}}{\mathbf{u}_{\mathbf{1}} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{\mathbf{1}}+\left(\frac{\mathbf{u}_{\mathbf{2}} \cdot \mathbf{v}}{\mathbf{u}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{2}}}\right) \mathbf{u}_{\mathbf{2}}
$$

We calculate

$$
\begin{aligned}
\mathbf{u}_{1} \cdot \mathbf{v} & =2 \\
\mathbf{u}_{\mathbf{2}} \cdot \mathbf{v} & =2 \\
\mathbf{u}_{\mathbf{1}} \cdot \mathbf{u}_{1} & =3 \\
\mathbf{u}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{2}} & =2
\end{aligned}
$$

Thus,

$$
\operatorname{proj}_{W}(\mathbf{v})=\frac{2}{3} \mathbf{u}_{\mathbf{1}}+\frac{2}{2} \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{r}
5 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right] .
$$

(17) By definition,

$$
\operatorname{proj}_{W}(\mathbf{v})=\left(\frac{\mathbf{u}_{\mathbf{1}} \cdot \mathbf{v}}{\mathbf{u}_{\mathbf{1}} \cdot \mathbf{u}_{\mathbf{1}}}\right) \mathbf{u}_{\mathbf{1}}+\left(\frac{\mathbf{u}_{\mathbf{2}} \cdot \mathbf{v}}{\mathbf{u}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{2}}}\right) \mathbf{u}_{\mathbf{2}} .
$$

We calculate

$$
\begin{aligned}
\mathbf{u}_{1} \cdot \mathbf{v} & =1 \\
\mathbf{u}_{2} \cdot \mathbf{v} & =13 \\
\mathbf{u}_{1} \cdot \mathbf{u}_{1} & =9 \\
\mathbf{u}_{2} \cdot \mathbf{u}_{2} & =18
\end{aligned}
$$

Thus,

$$
\operatorname{proj}_{W}(\mathbf{v})=\frac{1}{9} \mathbf{u}_{\mathbf{1}}+\frac{13}{18} \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
3
\end{array}\right]
$$

(21) Let $\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{u}_{\mathbf{2}}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$. Then $W=\operatorname{span}\left(\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right)$. We want to write

$$
\mathbf{v}=\mathbf{w}+\mathbf{w}^{\perp}
$$

where $\mathbf{w} \in W$ and $\mathbf{w}^{\perp} \in W^{\perp}$. Using the proof of Theorem 5.11, we see that

$$
\mathbf{w}=\operatorname{proj}_{W}(\mathbf{v})=\left(\frac{\mathbf{u}_{\mathbf{1}} \cdot \mathbf{v}}{\mathbf{u}_{\mathbf{1}} \cdot \mathbf{u}_{\mathbf{1}}}\right) \mathbf{u}_{\mathbf{1}}+\left(\frac{\mathbf{u}_{\mathbf{2}} \cdot \mathbf{v}}{\mathbf{u}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{2}}}\right) \mathbf{u}_{\mathbf{2}}
$$

We calculate

$$
\begin{aligned}
\mathbf{u}_{1} \cdot \mathbf{v} & =3 \\
\mathbf{u}_{\mathbf{2}} \cdot \mathbf{v} & =9 \\
\mathbf{u}_{1} \cdot \mathbf{u}_{1} & =6 \\
\mathbf{u}_{\mathbf{2}} \cdot \mathbf{u}_{\mathbf{2}} & =3
\end{aligned}
$$

Thus,

$$
\mathbf{w}=\operatorname{proj}_{W}(\mathbf{v})=\frac{1}{2} \mathbf{u}_{\mathbf{1}}+3 \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}
7 / 2 \\
-2 \\
7 / 2
\end{array}\right] .
$$

We now let

$$
\mathbf{w}^{\perp}=\mathbf{v}-\mathbf{w}=\left[\begin{array}{c}
1 / 2 \\
0 \\
-1 / 2
\end{array}\right]
$$

So, the orthogonal decomposition of \mathbf{v} with respect to W is

$$
\mathbf{v}=\mathbf{w}+\mathbf{w}^{\perp}=\left[\begin{array}{c}
7 / 2 \\
-2 \\
7 / 2
\end{array}\right]+\left[\begin{array}{c}
1 / 2 \\
0 \\
-1 / 2
\end{array}\right]
$$

(25) No, it is not necessarily true that \mathbf{w}^{\prime} is in W^{\perp}. For example, consider the subspace W of \mathbb{R}^{3} from exercise 21 . That is, let

$$
W=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]\right)
$$

Take

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \in \mathbb{R}^{3} .
$$

We observe that since W is a subspace, the vector

$$
\mathbf{w}:=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

is in W. Moreover, we can write

$$
\mathbf{v}=\mathbf{0}+\mathbf{v}
$$

Here the vector \mathbf{v} is also playing the role of \mathbf{w}^{\prime}. However,

$$
\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=6 \neq 0
$$

This shows that \mathbf{w}^{\prime} is not in W^{\perp}.
(29) To do this exercise, it is helpful to use a part of exercise (27); namely, if $\mathbf{u} \in W$, then $\operatorname{proj}_{W}(\mathbf{u})=\mathbf{u}$. Let's see why this is true.

By Theorem 5.11 and its proof, we can write

$$
\mathbf{u}=\mathbf{w}+\mathbf{w}^{\perp}=\operatorname{proj}_{W}(\mathbf{u})+\mathbf{w}^{\perp}
$$

where $\mathbf{w}=\operatorname{proj}_{W}(\mathbf{u}) \in W$ and $\mathbf{w}^{\perp} \in W^{\perp}$ and these vectors are unique. But $\mathbf{0} \in W^{\perp}$ and $\mathbf{u} \in W$ and

$$
\mathbf{u}=\mathbf{u}+\mathbf{0}
$$

Since the vectors \mathbf{w} and \mathbf{w}^{\perp} are unique, we must have that $\mathbf{w}=\operatorname{proj}_{W}(\mathbf{u})=\mathbf{u}$ and $\mathbf{w}^{\perp}=\mathbf{0}$. This shows that $\operatorname{proj}_{W}(\mathbf{u})=\mathbf{u}$.

Now let \mathbf{x} be a vector in \mathbb{R}^{n}. Then, by definition, $\operatorname{proj}_{W}(\mathbf{x})$ is a linear combination of vectors in W and so $\operatorname{proj}_{W}(\mathbf{x})$ is a vector in W (since W is a subspace and thus closed under scalar multiplication and vector addition!). But the projection of any vector in W is just itself by the above observations. Therefore, we conlcude that

$$
\operatorname{proj}_{W}\left(\operatorname{proj}_{W}(\mathbf{x})\right)=\operatorname{proj}_{W}(\mathbf{x}) .
$$

Section 5.3:

(1) Let $\mathbf{v}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Then let

$$
\begin{aligned}
\mathbf{v}_{\mathbf{2}} & =\mathbf{x}_{\mathbf{2}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}} \\
& =\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\frac{3}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
-1 / 2 \\
1 / 2
\end{array}\right]
\end{aligned}
$$

The set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is an orthogonal basis for \mathbb{R}^{2}.
To obtain an orthonormal basis for \mathbb{R}^{2} we normalize the vectors $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$. We find

$$
\begin{aligned}
\left\|\mathbf{v}_{\mathbf{1}}\right\| & =\sqrt{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}=\sqrt{2} \\
\left\|\mathbf{v}_{\mathbf{2}}\right\| & =\sqrt{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}}=1 / \sqrt{2}
\end{aligned}
$$

Let

$$
\mathbf{w}_{\mathbf{1}}=\frac{1}{\left\|\mathbf{v}_{\mathbf{1}}\right\|} \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

and

$$
\mathbf{w}_{\mathbf{2}}=\frac{1}{\left\|\mathbf{v}_{\mathbf{2}}\right\|} \mathbf{v}_{\mathbf{2}}\left[\begin{array}{r}
-\sqrt{2} / 2 \\
\sqrt{2} / 2
\end{array}\right] .
$$

Then the set $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}$ is an orthonormal basis for \mathbb{R}^{2}.
(4) Let $\mathbf{v}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then let

$$
\begin{aligned}
\mathbf{v}_{\mathbf{2}} & =\mathbf{x}_{\mathbf{2}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\frac{2}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
1 / 3 \\
1 / 3 \\
-2 / 3
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{v}_{\mathbf{3}} & =\mathbf{x}_{\mathbf{3}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}-\left(\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{x}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}}\right) \mathbf{v}_{\mathbf{2}} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{1 / 3}{2 / 3}\left[\begin{array}{r}
1 / 3 \\
1 / 3 \\
-2 / 3
\end{array}\right] \\
& =\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
0
\end{array}\right]
\end{aligned}
$$

The set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is an orthogonal basis for \mathbb{R}^{3}.

To obtain an orthonormal basis for \mathbb{R}^{3} we normalize the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$. We find

$$
\begin{aligned}
\left\|\mathbf{v}_{\mathbf{1}}\right\| & =\sqrt{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}=\sqrt{3} \\
\left\|\mathbf{v}_{\mathbf{2}}\right\| & =\sqrt{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}}=\sqrt{6} / 3 \\
\left\|\mathbf{v}_{\mathbf{3}}\right\| & =\sqrt{\mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{3}}}=\sqrt{2} / 2
\end{aligned}
$$

Let

$$
\mathbf{w}_{\mathbf{1}}=\frac{1}{\left\|\mathbf{v}_{\mathbf{1}}\right\|} \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]
$$

and

$$
\mathbf{w}_{\mathbf{2}}=\frac{1}{\left\|\mathbf{v}_{\mathbf{2}}\right\|} \mathbf{v}_{\mathbf{2}}\left[\begin{array}{r}
1 / \sqrt{6} \\
1 / \sqrt{6} \\
-2 / \sqrt{6}
\end{array}\right]
$$

and

$$
\mathbf{w}_{\mathbf{3}}=\frac{1}{\left\|\mathbf{v}_{\mathbf{3}}\right\|} \mathbf{v}_{\mathbf{3}}\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right]
$$

Then the set $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is an orthonormal basis for \mathbb{R}^{3}.
(5) Let $\mathbf{v}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. Then let

$$
\begin{aligned}
\mathbf{v}_{\mathbf{2}} & =\mathbf{x}_{\mathbf{2}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}} \\
& =\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]-\frac{7}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
2
\end{array}\right]
\end{aligned}
$$

Then the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is an orthogonal basis for W.
(6) Let $\mathbf{v}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{r}2 \\ -1 \\ 1 \\ 2\end{array}\right]$. Then let

$$
\begin{aligned}
\mathbf{v}_{\mathbf{2}} & =\mathbf{x}_{\mathbf{2}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}} \\
& =\left[\begin{array}{r}
3 \\
-1 \\
0 \\
4
\end{array}\right]-\frac{15}{10}\left[\begin{array}{r}
2 \\
-1 \\
1 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
1 / 2 \\
-3 / 2 \\
1
\end{array}\right]
\end{aligned}
$$

Then the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is an orthogonal basis for W.
(9) We first need to find a basis for $\operatorname{col}(A)$ by row-reducing A. We have

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Thus, every original column of A is a basis vector for $\operatorname{col}(A)$. More precisely, we let

$$
\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \mathbf{x}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{x}_{\mathbf{3}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Then $\mathcal{B}=\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}\right\}$ is a basis for $\operatorname{col}(A)$.
We now apply the Gram-Schmidt process on the vectors in \mathcal{B} to obtain an orthogonal basis for $\operatorname{col}(A)$.

Let $\mathbf{v}_{\mathbf{1}}=\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Then let

$$
\begin{aligned}
\mathbf{v}_{\mathbf{2}} & =\mathbf{x}_{\mathbf{2}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}} \\
& =\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
1 \\
-1 / 2 \\
1 / 2
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{v}_{\mathbf{3}} & =\mathbf{x}_{\mathbf{3}}-\left(\frac{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{x}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}-\left(\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{x}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}}\right) \mathbf{v}_{\mathbf{2}} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-\frac{1 / 2}{3 / 2}\left[\begin{array}{c}
1 \\
-1 / 2 \\
1 / 2
\end{array}\right] \\
& =\left[\begin{array}{r}
2 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right]
\end{aligned}
$$

The set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is an orthogonal basis for $\operatorname{col}(A)$.

