Problem Set 4

Due: Thursday, April 22

This problem set involves choices! Submit solutions to 2 exercises from Part I and 1 exercise from Part II.

Part I - Exercises Related to Borel-Fixed and Generic Initial Ideals

The following exercises are taken from the Chapter 2 Exercises of "Combinatorial Commutative Algebra" by E. Miller and B. Sturmfels.

- (1) [Exercise 2.2] Can you find a general formula for the number $\mathcal{B}(r, d)$ of Borel-fixed ideals generated by r monomials of degree d in three unknowns $\{x_1, x_2, x_3\}$?
- (2) [Exercise 2.4] Is the class of Borel-fixed ideals closed under the ideal-theoretic operations of taking intersections, sums, and products? Either prove your claims or give counter-examples.
- (3) [Modified Exercise 2.11] Let $I = (x_1x_2, x_2x_3, x_1x_3) \subseteq S = k[x_1, x_2, x_3]$. Compute the generic initial ideal **gin**_<(I) for the lexicographic and reverse lexicographic monomial orders. Also, compute the lex-segment ideal $L \subseteq S$ with H(S/I) = H(S/L). (Note: Although you can use a computer algebra program to support your solution, you should avoid finding the generic initial ideals by using the pre-defined function.)

Part II - Exercises From Group Presentations

(1) From Boeckner-Stolee: Recall the definition of a perfect graph is a graph for which every induced subgraph, we have the chromatic number equal to the clique number.

It is well known that the *Petersen graph*, described as follows and shown below, is not perfect.

The Petersen graph is the graph on 10 vertices, given by subsets of size 2 from a set of 5 elements. The edges are formed if the two vertices (as subsets) are disjoint.

- (a) Show that the chromatic number of the Petersen graph is 3, but the clique number is 2.
- (b) Find an odd hole.
- (c) Let $J := I(G)^{\vee}$, where G is the Petersen graph. Give an associated prime of height > 3 in Ass (J^2) .
- (2) From DeVries-Yu: Let $K_{n,d}$ be the complete bipartite graph on n and d vertices (i.e. let L be a set of n vertices and R a set of d vertices with $L \cap R = \emptyset$. Then the vertex set of $K_{n,d}$ is $L \cup R$, and the edge set of $K_{n,d}$ is the set of all pairs with one element from L and one element from R). Let $I(K_{n,d})$ denote the edge ideal of $K_{n,d}$. Write a recursive formula for $\beta_{i,j}(I(K_{n,d}))$ in terms of the Betti numbers of $I(K_{m,d})$ for m < n. Use your formula to compute $\beta_{1,j}(I(K_{n,d}))$ for all j.