
Math 918 – The Power of Monomial Ideals

Problem Set 3 Solutions
Due: Thursday, April 15

This problem set involves choices! Submit solutions to 2 exercises from Part I and 1 exercise from Part II.

Part I - Exercises Related to Hilbert Functions & Regular Sequences
(1) For parts (b) - (d) of this exercise use reverse-lexicographic order with x1 >revlex> x2 >revlex · · · .

(a) Find a (3, 4, 5)-lex-plus-powers ideal L ⊂ S = k[x1, x2, x3] such that H(S/L, 3) = 9 and
H(S/L, 6) = 5.

Solution: Let L = (x3
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3). A straightforward check using the defini-

tion verifies that L is a (3, 4, 5)-lex-plus-powers ideal. One can also check, either by hand
or using a computer algebra program, that H(S/L) = (1, 3, 6, 9, 8, 7, 5, 3, 1, 0, 0, . . .). An-
other possible (3, 4, 5)-lex-plus-powers ideal that would satisfy the given conditions is L′ :=
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2x3). We have H(S/L′) = (1, 3, 6, 9, 11, 11, 5, 3, 1, 0, 0, . . .).

(b) Fix m to be a monomial of degree d in S = k[x1, x2, x3, x4]/(x5
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4). Recall that L(m)

denotes the set of all degree d monomials in S which are greater than or equal to m. Decompose
|L(x3
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. Give an algebraic description of each

term in the decomposition.

Solution: The desired decomposition is
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= 6 + 10 + 2 = 18.

The integers in this decomposition are counting monomials in S of degree 8 as follows:
Any degree 8 monomial in S not divisible by x4 will be greater than x3
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such monomials; namely, those of the form xa1
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3 where 0 ≤ a1 ≤ 4, 0 ≤ a2 ≤ 3, 0 ≤ a3 ≤ 3

and a1 + a2 + a3 = 8.
Any degree 8 monomial in S involving x1

4 but no higher power of x4 will be greater than
x3
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such monomials; namely, those of the form xa1
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and a1 + a2 + a3 = 7.
The monomials of degree 8 in S involving x2
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(c) Assume I ⊂ S = k[x1, x2, x3, x4] is a homogeneous ideal containing {x5
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H(S/I, 8) = 17, then what is the largest value possible for H(S/I, 9)?

Solution: To answer this question we need to use the following “Pascal’s Table” associated to
the given powers of the variables:

Degree: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
H(k[x1]/(x5

1)): 1 1 1 1 1 0 0 0 0 0 0 0 0 0
H(k[x1, x2]/(x5
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Starting in degree 8, we decompose 17 using integers of the form
(e1,...,ej

l

)
. Doing so we obtain

the decomposition (the corresponding numbers in the table are in bold):

H(S/I, 8) = 17 =
(
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We saw in class that
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(the corresponding numbers in the table are underlined).

(d) Assume that the EGH Conjecture is true. Can there be a homogeneous (3, 4, 4, 5)-ideal I ⊂
S = k[x1, x2, x3, x4] with H(S/I) = (1, 4, 10, 18, 24, 29, . . .)?

Solution: We again use the “Pascal’s Table”:

Degree: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
H(k[x1]/(x5

1)): 1 1 1 1 1 0 0 0 0 0 0 0 0 0
H(k[x1, x2]/(x5
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4
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Let H = (1, 4, 10, 18, 24, 29, . . .) = {ht}t≥0. Note that we can decompose h4 = 24 as:

h4 = 24 =
(
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4

)
+
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)
+
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)
= 13 + 10 + 1

(the corresponding integers are in bold in the table). Assuming the EGH Conjecture is
true, if there were a homogeneous (3, 4, 4, 5)-ideal I ⊂ S = k[x1, x2, x3, x4] with H(S/I) =
(1, 4, 10, 18, 24, 29, . . .) = H then

h5 = 29 ≤
(
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)
+
(
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+
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(these corresponding integers are in underlines in the table). Since

h5 = 29 > 28 = 14 + 13 + 1 =
(
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,

we conclude that there can be no such ideal I.

(2) EGH Points Conjecture in P2: Fix integers 2 ≤ d1 ≤ d2. Let ∆H = {ht}t≥0 be the first difference
Hilbert function of some finite set of distinct points in P2 such that ht ≤ H(k[x1, x2]/(xd11 , x

d2
2 ), t)

for all t ≥ 0. Prove that there exist finite sets of distinct points X ⊆ Y ⊂ P2 where Y is a complete
intersection of type {d1, d2} and ∆H(X) = ∆H if and only if ht+1 ≤ h(t)

t for all t ≥ 1.

Proof. No-one submitted a solution for this exercise. However, a few people have indicated that
they are still thinking about a proof. Thus, rather than giving an entire proof I will provide only
hints.

Suppose that ht+1 ≤ h(t)
t for all t ≥ 1. To construct the sets X and Y, define

Y := {[1 : a1 : a2] | ai ∈ N, 0 ≤ a1 ≤ d2 − 1, 0 ≤ a2 ≤ d1 − 1}.
By carefully applying the work of Clements and Lindström, one can lift a certain monomial ideal
in k[x1, x2] to obtain the desired subset X ⊆ Y. (Remember: the bounds ht+1 ≤ h

(t)
t for all t ≥ 1

really do come from the work of Clements and Lindström.)
Now suppose that we have sets X ⊆ Y ⊂ P2 where Y is a complete intersection of type {d1, d2}

and ∆H(X) = ∆H. To show that ht+1 ≤ h(t)
t for all t ≥ 1, combine the following observations:
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• If t ≤ d2 − 2 and ht < H(k[x1, x2]/(xd11 , x
d2
2 ), t), then h

(t)
t = ht.

• If t ≥ d2 − 1 and ht < H(k[x1, x2]/(xd11 , x
d2
2 ), t), then h

(t)
t = ht − 1.

• ∆H must be an O-sequence.
• One cannot have ht = ht+1 for any t ∈ {d2 − 1, . . . , d1 + d2 − 3}. (You can show this last fact

by using contradiction and applying the Cayley-Bacharach Theorem.)
�

(3) Classical Cayley-Bacharach Theorem: Let X = {P1, . . . , P9} be the complete intersection of two
cubics in P2. Use the Cayley-Bacharach Theorem to show that any cubic passing through 8 of the
9 points of X must also pass through the remaining 9th point.

Proof. Without loss of generality, we can assume that there is a cubic passing through Y :=
{P1, . . . , P8}. We want to show that this cubic also passes through {P9}. Since X is a complete
intersection of two cubics, we know that

∆H(X) = (1, 2, 3, 2, 1, 0, 0, . . .).

Also, by properties of Hilbert functions of finite sets of distinct points, we know that

∆H({P9}) = (1, 0, 0, . . .).

The Cayley-Bacharach Theorem gives the relationship

∆H(X, t) = ∆H({P9}, t) + ∆H(Y, (3 + 3)− 2− t).
Using this equation to solve for ∆H(Y), we find

∆H(Y) = (1, 2, 3, 2, 0, 0, . . .).

Thus, we now have

H(X) = H({P1, . . . , P8, P9}) = (1, 3, 6, 8, 9, 9, . . .)

H(Y) = H({P1, . . . , P8}) = (1, 3, 6, 8, 8, . . .).

That is, dimk(I(Y)3) = dimk(I(X)3) =
(
2+3
3

)
− 8 = 10 − 8 = 2. But, since Y ⊂ X, we know that

I(X)3 ⊆ I(Y)3. Thus, I(X)3 = I(Y)3. That is, any cubic passing through Y must pass through all
of X and hence {P9}. �

Part II - Exercises From Group Presentations
(1) From Croll-Gibbons-Johnson: Our exercise outlines a proof of the following lemma due to Buchs-

baum and Eisenbud:

Lemma. Let R be a ring, x ∈ R, and S = R/(x). Let B be an S-module, and let

F : F2
φ2 // F1

φ1 // F0

be an exact sequence of S-modules with coker(φ1) ∼= B. Suppose that

G : G2
ψ2 // G1

ψ1 // G0

is a complex of R-modules such that
(i) x is a non-zero divisor on each Gi,
(ii) Gi ⊗R S ∼= Fi, and
(iii) ψi ⊗R S = φi.
Then A = coker(ψ1) is a lifting of B to R.

(a) With the conditions of the lemma and i ∈ {0, 1, 2}, prove that the sequence

0 // Gi
·x // Gi

q // Gi/xGi // 0

is exact, where ·x is the map given by multiplication by x and q is the canonical quotient map.
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Proof. The map ·x is injective since x is a non-zero divisor on Gi (condition (i)). By construc-
tion, ker(q) = xGi = im(·x). Finally, the quotient is surjective. �

(b) In the diagram below, show that each square of the diagram commutes.

0

��

0

��

0

��
· · · // 0 // G2

ψ2 //

·x
��

G1
ψ1 //

·x
��

G0

·x
��

// 0 // · · ·

· · · // 0 // G2
ψ2 //

��

G1
ψ1 //

��

G0

��

// 0 // · · ·

· · · // 0 // F2
φ2 //

��

F1
φ1 //

��

F0

��

// 0 // · · ·

0 0 0

Conclude that

0 // G ·x // G // F // 0

is an exact sequence of complexes (briefly explain why each column is exact).

Proof. Since x ∈ R and the ψi are module homomorphisms, ·x ◦ ψi(g) = xψi(g) = ψi(xg) =
ψi ◦ ·x(g), so the top squares commute. Note that Fi ∼= Gi⊗S ∼= Gi/xGi (which gives that the
columns are exact), and we may rewrite the square as

Gi
ψi //

idGi
⊗1S

��

Gi−1

idGi−1
⊗1S

��
Gi ⊗R S

ψi⊗idS

// Gi−1 ⊗R S.

But then (
idGi−1 ⊗1S

)
◦ ψi(g) = ψi(g)⊗ 1S = (ψi ⊗ idS) ◦ (idGi ⊗1S) (g),

and the square commutes. �

(c) Given any exact sequence of complexes 0 // D.
·x // D.

// C. // 0 , there is a corre-
sponding long exact sequence in homology given by

· · · // H2(D.) // H2(C.)

vv
H1(D.)

·x // H1(D.) // H1(C.)

vv
H0(D.)

·x // H0(D.) // H0(C.) // 0.

Use the long exact sequence in homology with the exact sequence of complexes to determine
that A/xA ∼= B and x is a non-zero divisor on A. Conclude that A is a lifting of B to R.
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Proof. Computing homologies, we determine thatH0(F) = coker(φ1) = B, H0(G) = coker(ψ1) =
A, and H1(F) = 0 since F is exact at F1. Thus the long exact sequence in homology yields, in
an exciting role reversal, a short exact sequence

0 // A
·x // A // B // 0,

confirming that ·x is injective (so x is a non-zero divisor on A) and B ∼= A/ im(·x) = A/xA.
That’s what we needed to satisfy to show that A is a lifting of B to R. �

(2) From Brase-Denkert-Janssen: Accept that any monomial ordering > on k[x1, . . . , xn] can be ob-
tained by taking pairwise orthogonal vectors v1, . . . ,vr ∈ kn where v1 has only non-negative entries
and where xααα > xβββ if and only if there exists t ≤ r such that vi · ααα = vi · βββ for all i ≤ t − 1 and
vt ·ααα > vt · βββ.
(a) Let r = n and vi = ei for all i where ei is the ith standard basis vector for kn. Show that >

is the lexicographic order.

Proof. Let ααα = (a1, . . . , an) and βββ = (b1, . . . , bn). By definition, xααα >lex xβββ if and only if the
leftmost non-zero entry of ααα−βββ is positive. Say this entry is in the t position. Then xααα >lex xβββ

if and only if
vi ·ααα = ai = bi = vi · βββ for all 1 ≤ i ≤ t− 1

and
vt ·ααα = at > bt = vt · βββ.

Therefore, xααα >lex xβββ if and only if xααα > xβββ. �

(b) Let r = n and define vectors as follows:

v1 = (1, . . . , 1)

vi = (1, 1, . . . , 1, i− (n+ 1), 0, 0, . . . , 0)

where the entry i− (n+ 1) is in the (n+ 2− i)th position for i ∈ {2, . . . , n}. Show that > is
the graded reverse-lexicographic order.

Proof. Let r = n and define vectors v1 and vi as above. We will show that > is >grevlex. To do
this, we will show that xxxααα > xxxβββ iff there exists t ≤ n such that vi · ααα = vi · βββ for i ≤ t − 1 and
vt ·ααα > vt′ · βββ.

Let ααα = (a1, . . . , an) and βββ = (b1, . . . , bn) we have v1 · ααα = |ααα| =
∑n

i=1 ai and likewise for βββ.
Additionally, v2 ·ααα =

∑n−1
i=1 ai − nan and likewise for βββ. Inductively, we can see that

(1) vi ·ααα = vi−1 ·ααα+ (n+ 2− i)(an−(i−3) − an−(i−2)) for i ≥ 3

and likewise for βββ.
Suppose xxxααα >grevlex xxx

βββ for ααα 6= βββ. By definition, this happens IFF v1 ·ααα > v1 ·βββ or v1 ·ααα = v1 ·βββ
and there exists s for which 0 ≤ s < n such that an−i = bn−i for all i < s and an−s < bn−s. We
will show that this is true IFF xxxααα > xxxβββ. To do so, we consider two cases.

Case 1: Assume |ααα| > |βββ|. This holds IFF v1 ·ααα > v1 ·βββ which implies xxxααα > xxxβββ and concludes
Case 1.

Case 2: Assume v1 ·ααα = v1 ·βββ and there exists s < n such that an−i = bn−i for all i < s and
an−s < bn−s. Now s = 0 IFF v2 ·ααα > v2 · βββ, as this holds IFF −nan > −nbn IFF an < bn.

So, assume s > 0. Since ααα 6= βββ but |ααα| =
∑n

i=1 ai =
∑n

i=1 bi = |βββ|, ααα and βββ must differ in at
least two entries, so an−i = bn−i for i < s means that s ≤ n − 2. Thus, we are considering s for
which 1 ≤ s ≤ n− 2.

Notice that 1 ≤ s ≤ n− 2 implies that v1 ·ααα = v1 ·βββ and v2 ·ααα = v2 ·βββ. Using (1), we see that
v3 ·ααα = v2 ·ααα+ (n− 1)(an − an−1) (and likewise for βββ), so v3 ·ααα− v3 ·βββ = (n− 1)(bn−1 − an−1),
so v3 ·ααα > v3 · βββ IFF an−1 < bn−1 and v3 ·ααα = v3 · βββ IFF an−1 = bn−1.
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Define t = s+ 2. Continuing like this, we see for all t > i ≥ 3 that

vi ·ααα− vi · βββ = (n+ 2− i)(bn−(i−2) − an−(i−2)).

Thus, for all such i, vi ·ααα = vi · βββ. Now, if i = s+ 2 = t,

vt ·ααα− vt · βββ = (n+ 2− (s+ 2))(bn−(s+2−2) − an−(s+2−2)) = (n− s)(bn−s − an−s) > 0.

In other words, an−s < bn−s IFF vt ·ααα > vt · βββ. Thus, an−s < bn−s implies xxxααα > xxxβββ.

Now, if xxxααα > xxxβββ, either the converse of the last conclusion of Case 1 is true (i.e., xxxααα > xxxβββ implies
v1 ·ααα > v1 · βββ), or that of Case 2 is true (i.e., xxxααα > xxxβββ implies |ααα| = |βββ| and an−s < bn−s for some
s ≥ 0), and, in either case, we may retrace the string of “if and only if”s from there to conclude
that xxxααα >grevlex xxx

βββ. �


