Problem Set 3 Solutions

Due: Thursday, April 15

This problem set involves choices! Submit solutions to 2 exercises from Part I and 1 exercise from Part II.

Part I - Exercises Related to Hilbert Functions \& Regular Sequences

(1) For parts (b) - (d) of this exercise use reverse-lexicographic order with $x_{1}>_{\text {revlex }}>x_{2}>_{\text {revlex }} \cdots$.
(a) Find a (3,4,5)-lex-plus-powers ideal $L \subset S=k\left[x_{1}, x_{2}, x_{3}\right]$ such that $H(S / L, 3)=9$ and $H(S / L, 6)=5$.
Solution: Let $L=\left(x_{1}^{3}, x_{2}^{4}, x_{3}^{5}, x_{1}^{2} x_{2}^{2}, x_{1}^{2} x_{2} x_{3}, x_{1}^{2} x_{3}^{2}\right)$. A straightforward check using the definition verifies that L is a $(3,4,5)$-lex-plus-powers ideal. One can also check, either by hand or using a computer algebra program, that $H(S / L)=(1,3,6,9,8,7,5,3,1,0,0, \ldots)$. Another possible ($3,4,5$)-lex-plus-powers ideal that would satisfy the given conditions is $L^{\prime}:=$ $\left(x_{1}^{3}, x_{2}^{4}, x_{3}^{5}, x_{1}^{2} x_{3}^{4}, x_{1}^{2} x_{2} x_{3}^{3}, x_{1}^{2} x_{2}^{2} x_{3}^{2}, x_{1}^{2} x_{2}^{3} x_{3}\right)$. We have $H\left(S / L^{\prime}\right)=(1,3,6,9,11,11,5,3,1,0,0, \ldots)$.
(b) Fix m to be a monomial of degree d in $S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1}^{5}, x_{2}^{4}, x_{3}^{4}, x_{4}^{3}\right)$. Recall that $L(m)$ denotes the set of all degree d monomials in S which are greater than or equal to m. Decompose $\left|L\left(x_{1}^{3} x_{2}^{3} x_{4}^{2}\right)\right|$ in terms of integers of the form $\left(\stackrel{e_{1}, \ldots, e_{j}}{l}\right)$. Give an algebraic description of each term in the decomposition.

Solution: The desired decomposition is

$$
\left|L\left(x_{1}^{3} x_{2}^{3} x_{4}^{2}\right)\right|=\binom{4,3,3}{8}+\binom{4,3,3}{7}+\binom{4,3}{6}=6+10+2=18
$$

The integers in this decomposition are counting monomials in S of degree 8 as follows:
Any degree 8 monomial in S not divisible by x_{4} will be greater than $x_{1}^{3} x_{2}^{3} x_{4}^{2}$. There are

$$
6=\binom{4,3,3}{8}
$$

such monomials; namely, those of the form $x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}}$ where $0 \leq a_{1} \leq 4,0 \leq a_{2} \leq 3,0 \leq a_{3} \leq 3$ and $a_{1}+a_{2}+a_{3}=8$.
Any degree 8 monomial in S involving x_{4}^{1} but no higher power of x_{4} will be greater than $x_{1}^{3} x_{2}^{3} x_{4}^{2}$. There are

$$
10=\binom{4,3,3}{7}
$$

such monomials; namely, those of the form $x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}}$ where $0 \leq a_{1} \leq 4,0 \leq a_{2} \leq 3,0 \leq a_{3} \leq 3$ and $a_{1}+a_{2}+a_{3}=7$.
The monomials of degree 8 in S involving x_{4}^{2} but no higher power of x_{4} and which are greater than $x_{1}^{3} x_{2}^{3} x_{4}^{2}$ are $x_{1}^{4} x_{2}^{2} x_{4}^{2}$ and $x_{1}^{3} x_{2}^{3} x_{4}^{2}$. This set of monomials has cardinality

$$
2=\binom{4,3}{6}
$$

(c) Assume $I \subset S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is a homogeneous ideal containing $\left\{x_{1}^{5}, x_{2}^{4}, x_{3}^{4}, x_{4}^{3}\right\}$. If $H(S / I, 8)=17$, then what is the largest value possible for $H(S / I, 9)$?
Solution: To answer this question we need to use the following "Pascal's Table" associated to the given powers of the variables:

Degree:	0	1	2	3	4	5	6	7	8	9	10	11	12	13
$H\left(k\left[x_{1}\right] /\left(x_{1}^{5}\right)\right):$	1	1	1	1	$\mathbf{1}$	$\underline{\mathbf{0}}$	$\underline{\mathbf{0}}$	$\underline{0}$	0	0	0	0	0	0
$H\left(k\left[x_{1}, x_{2}\right] /\left(x_{1}^{5}, x_{2}^{4}\right)\right):$	1	2	3	4	4	3	2	1	0	0	0	0	0	0
$H\left(k\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1}^{5}, x_{2}^{4}, x_{3}^{4}\right)\right):$	1	3	6	10	13	14	13	$\mathbf{1 0}$	$\underline{\mathbf{6}}$	$\underline{3}$	1	0	0	0
$H\left(k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1}^{5}, x_{2}^{4}, x_{3}^{4}, x_{4}^{3}\right)\right):$	1	4	10	19	29	37	40	37	29	19	10	4	1	0

Starting in degree 8, we decompose 17 using integers of the form $\binom{e_{1}, \ldots, e_{j}}{l}$. Doing so we obtain the decomposition (the corresponding numbers in the table are in bold):
$H(S / I, 8)=17=\binom{4,3,3}{8}+\binom{4,3,3}{7}+\binom{4}{6}+\binom{4}{5}+\binom{4}{4}=6+10+0+0+1$.
We saw in class that

$$
H(S / I, 9) \leq\binom{ 4,3,3}{9}+\binom{4,3,3}{8}+\binom{4}{7}+\binom{4}{6}+\binom{4}{5}=3+6+0+0+0=9
$$

(the corresponding numbers in the table are underlined).
(d) Assume that the EGH Conjecture is true. Can there be a homogeneous (3,4,4,5)-ideal $I \subset$ $S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ with $H(S / I)=(1,4,10,18,24,29, \ldots)$?
Solution: We again use the "Pascal's Table":

Degree:	0	1	2	3	4	5	6	7	8	9	10	11	12	13
$H\left(k\left[x_{1}\right] /\left(x_{1}^{5}\right)\right):$	1	1	$\mathbf{1}$	$\mathbf{1}$	1	0	0	0	0	0	0	0	0	0
$H\left(k\left[x_{1}, x_{2}\right] /\left(x_{1}^{5}, x_{2}^{4}\right)\right):$	1	2	3	4	4	3	2	1	0	0	0	0	0	0
$H\left(k\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1}^{5}, x_{2}^{4}, x_{3}^{4}\right)\right):$	1	3	6	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 4}$	13	10	6	3	1	0	0	0
$H\left(k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1}^{5}, x_{2}^{4}, x_{3}^{4}, x_{4}^{3}\right)\right):$	1	4	10	19	$\mathbf{2 9}$	37	40	37	29	19	10	4	1	0

Let $\mathcal{H}=(1,4,10,18,24,29, \ldots)=\left\{h_{t}\right\}_{t \geq 0}$. Note that we can decompose $h_{4}=24$ as:

$$
h_{4}=24=\binom{4,3,3}{4}+\binom{4,3,3}{3}+\binom{4}{2}=13+10+1
$$

(the corresponding integers are in bold in the table). Assuming the EGH Conjecture is true, if there were a homogeneous $(3,4,4,5)$-ideal $I \subset S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ with $H(S / I)=$ $(1,4,10,18,24,29, \ldots)=\mathcal{H}$ then

$$
h_{5}=29 \leq\binom{ 4,3,3}{5}+\binom{4,3,3}{4}+\binom{4}{3}
$$

(these corresponding integers are in underlines in the table). Since

$$
h_{5}=29>28=14+13+1=\binom{4,3,3}{5}+\binom{4,3,3}{4}+\binom{4}{3}
$$

we conclude that there can be no such ideal I.
(2) EGH Points Conjecture in \mathbb{P}^{2} : Fix integers $2 \leq d_{1} \leq d_{2}$. Let $\Delta \mathcal{H}=\left\{h_{t}\right\}_{t \geq 0}$ be the first difference Hilbert function of some finite set of distinct points in \mathbb{P}^{2} such that $h_{t} \leq H\left(k\left[x_{1}, x_{2}\right] /\left(x_{1}^{d_{1}}, x_{2}^{d_{2}}\right), t\right)$ for all $t \geq 0$. Prove that there exist finite sets of distinct points $\mathbb{X} \subseteq \mathbb{Y} \subset \mathbb{P}^{2}$ where \mathbb{Y} is a complete intersection of type $\left\{d_{1}, d_{2}\right\}$ and $\Delta H(\mathbb{X})=\Delta \mathcal{H}$ if and only if $h_{t+1} \leq h_{t}^{(t)}$ for all $t \geq 1$.

Proof. No-one submitted a solution for this exercise. However, a few people have indicated that they are still thinking about a proof. Thus, rather than giving an entire proof I will provide only hints.

Suppose that $h_{t+1} \leq h_{t}^{(t)}$ for all $t \geq 1$. To construct the sets \mathbb{X} and \mathbb{Y}, define

$$
\mathbb{Y}:=\left\{\left[1: a_{1}: a_{2}\right] \mid a_{i} \in \mathbb{N}, 0 \leq a_{1} \leq d_{2}-1,0 \leq a_{2} \leq d_{1}-1\right\} .
$$

By carefully applying the work of Clements and Lindström, one can lift a certain monomial ideal in $k\left[x_{1}, x_{2}\right]$ to obtain the desired subset $\mathbb{X} \subseteq \mathbb{Y}$. (Remember: the bounds $h_{t+1} \leq h_{t}^{(t)}$ for all $t \geq 1$ really do come from the work of Clements and Lindström.)

Now suppose that we have sets $\mathbb{X} \subseteq \mathbb{Y} \subset \mathbb{P}^{2}$ where \mathbb{Y} is a complete intersection of type $\left\{d_{1}, d_{2}\right\}$ and $\Delta H(\mathbb{X})=\Delta \mathcal{H}$. To show that $h_{t+1} \leq h_{t}^{(t)}$ for all $t \geq 1$, combine the following observations:

- If $t \leq d_{2}-2$ and $h_{t}<H\left(k\left[x_{1}, x_{2}\right] /\left(x_{1}^{d_{1}}, x_{2}^{d_{2}}\right), t\right)$, then $h_{t}^{(t)}=h_{t}$.
- If $t \geq d_{2}-1$ and $h_{t}<H\left(k\left[x_{1}, x_{2}\right] /\left(x_{1}^{d_{1}}, x_{2}^{d_{2}}\right), t\right)$, then $h_{t}^{(t)}=h_{t}-1$.
- $\Delta \mathcal{H}$ must be an O -sequence.
- One cannot have $h_{t}=h_{t+1}$ for any $t \in\left\{d_{2}-1, \ldots, d_{1}+d_{2}-3\right\}$. (You can show this last fact by using contradiction and applying the Cayley-Bacharach Theorem.)
(3) Classical Cayley-Bacharach Theorem: Let $\mathbb{X}=\left\{P_{1}, \ldots, P_{9}\right\}$ be the complete intersection of two cubics in \mathbb{P}^{2}. Use the Cayley-Bacharach Theorem to show that any cubic passing through 8 of the 9 points of \mathbb{X} must also pass through the remaining 9 th point.

Proof. Without loss of generality, we can assume that there is a cubic passing through $\mathbb{Y}:=$ $\left\{P_{1}, \ldots, P_{8}\right\}$. We want to show that this cubic also passes through $\left\{P_{9}\right\}$. Since \mathbb{X} is a complete intersection of two cubics, we know that

$$
\Delta H(\mathbb{X})=(1,2,3,2,1,0,0, \ldots)
$$

Also, by properties of Hilbert functions of finite sets of distinct points, we know that

$$
\Delta H\left(\left\{P_{9}\right\}\right)=(1,0,0, \ldots)
$$

The Cayley-Bacharach Theorem gives the relationship

$$
\Delta H(\mathbb{X}, t)=\Delta H\left(\left\{P_{9}\right\}, t\right)+\Delta H(\mathbb{Y},(3+3)-2-t) .
$$

Using this equation to solve for $\Delta H(\mathbb{Y})$, we find

$$
\Delta H(\mathbb{Y})=(1,2,3,2,0,0, \ldots) .
$$

Thus, we now have

$$
\begin{aligned}
H(\mathbb{X}) & =H\left(\left\{P_{1}, \ldots, P_{8}, P_{9}\right\}\right)=(1,3,6,8,9,9, \ldots) \\
H(\mathbb{Y}) & =H\left(\left\{P_{1}, \ldots, P_{8}\right\}\right)=(1,3,6,8,8, \ldots)
\end{aligned}
$$

That is, $\operatorname{dim}_{k}\left(I(\mathbb{Y})_{3}\right)=\operatorname{dim}_{k}\left(I(\mathbb{X})_{3}\right)=\binom{2+3}{3}-8=10-8=2$. But, since $\mathbb{Y} \subset \mathbb{X}$, we know that $I(\mathbb{X})_{3} \subseteq I(\mathbb{Y})_{3}$. Thus, $I(\mathbb{X})_{3}=I(\mathbb{Y})_{3}$. That is, any cubic passing through \mathbb{Y} must pass through all of \mathbb{X} and hence $\left\{P_{9}\right\}$.

Part II - Exercises From Group Presentations

(1) From Croll-Gibbons-Johnson: Our exercise outlines a proof of the following lemma due to Buchsbaum and Eisenbud:

Lemma. Let R be a ring, $x \in R$, and $S=R /(x)$. Let B be an S-module, and let

$$
\mathcal{F}: \quad F_{2} \xrightarrow{\phi_{2}} F_{1} \xrightarrow{\phi_{1}} F_{0}
$$

be an exact sequence of S-modules with $\operatorname{coker}\left(\phi_{1}\right) \cong B$. Suppose that

$$
\mathcal{G}: \quad G_{2} \xrightarrow{\psi_{2}} G_{1} \xrightarrow{\psi_{1}} G_{0}
$$

is a complex of R-modules such that
(i) x is a non-zero divisor on each G_{i},
(ii) $G_{i} \otimes_{R} S \cong F_{i}$, and
(iii) $\psi_{i} \otimes_{R} S=\phi_{i}$.

Then $A=\operatorname{coker}\left(\psi_{1}\right)$ is a lifting of B to R.
(a) With the conditions of the lemma and $i \in\{0,1,2\}$, prove that the sequence

$$
0 \longrightarrow G_{i} \xrightarrow{\cdot x} G_{i} \xrightarrow{q} G_{i} / x G_{i} \longrightarrow 0
$$

is exact, where $\cdot x$ is the map given by multiplication by x and q is the canonical quotient map.

Proof. The map $\cdot x$ is injective since x is a non-zero divisor on G_{i} (condition (i)). By construction, $\operatorname{ker}(q)=x G_{i}=\operatorname{im}(\cdot x)$. Finally, the quotient is surjective.
(b) In the diagram below, show that each square of the diagram commutes.

Conclude that

$$
0 \longrightarrow \mathcal{G} \xrightarrow{\cdot x} \mathcal{G} \longrightarrow \mathcal{F} \longrightarrow 0
$$

is an exact sequence of complexes (briefly explain why each column is exact).

Proof. Since $x \in R$ and the ψ_{i} are module homomorphisms, $\cdot x \circ \psi_{i}(g)=x \psi_{i}(g)=\psi_{i}(x g)=$ $\psi_{i} \circ \cdot x(g)$, so the top squares commute. Note that $F_{i} \cong G_{i} \otimes S \cong G_{i} / x G_{i}$ (which gives that the columns are exact), and we may rewrite the square as

But then

$$
\left(\operatorname{id}_{G_{i-1}} \otimes 1_{S}\right) \circ \psi_{i}(g)=\psi_{i}(g) \otimes 1_{S}=\left(\psi_{i} \otimes \operatorname{id}_{S}\right) \circ\left(\operatorname{id}_{G_{i}} \otimes 1_{S}\right)(g),
$$

and the square commutes.
(c) Given any exact sequence of complexes $0 \longrightarrow D . \xrightarrow{x} D . \longrightarrow C . \longrightarrow 0$, there is a corresponding long exact sequence in homology given by

Use the long exact sequence in homology with the exact sequence of complexes to determine that $A / x A \cong B$ and x is a non-zero divisor on A. Conclude that A is a lifting of B to R.

Proof. Computing homologies, we determine that $H_{0}(\mathcal{F})=\operatorname{coker}\left(\phi_{1}\right)=B, H_{0}(\mathcal{G})=\operatorname{coker}\left(\psi_{1}\right)=$ A, and $H_{1}(\mathcal{F})=0$ since \mathcal{F} is exact at F_{1}. Thus the long exact sequence in homology yields, in an exciting role reversal, a short exact sequence

$$
0 \longrightarrow A \xrightarrow{\cdot x} A \longrightarrow B \longrightarrow 0,
$$

confirming that $\cdot x$ is injective (so x is a non-zero divisor on A) and $B \cong A / \operatorname{im}(\cdot x)=A / x A$. That's what we needed to satisfy to show that A is a lifting of B to R.
(2) From Brase-Denkert-Janssen: Accept that any monomial ordering $>$ on $k\left[x_{1}, \ldots, x_{n}\right]$ can be obtained by taking pairwise orthogonal vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}} \in k^{n}$ where $\mathbf{v}_{\mathbf{1}}$ has only non-negative entries and where $\mathbf{x}^{\boldsymbol{\alpha}}>\mathbf{x}^{\boldsymbol{\beta}}$ if and only if there exists $t \leq r$ such that $\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\beta}$ for all $i \leq t-1$ and $\mathbf{v}_{\mathbf{t}} \cdot \boldsymbol{\alpha}>\mathbf{v}_{\mathbf{t}} \cdot \boldsymbol{\beta}$.
(a) Let $r=n$ and $\mathbf{v}_{\mathbf{i}}=\mathbf{e}_{\mathbf{i}}$ for all i where $\mathbf{e}_{\mathbf{i}}$ is the i th standard basis vector for k^{n}. Show that $>$ is the lexicographic order.

Proof. Let $\boldsymbol{\alpha}=\left(a_{1}, \ldots, a_{n}\right)$ and $\boldsymbol{\beta}=\left(b_{1}, \ldots, b_{n}\right)$. By definition, $\mathbf{x}^{\boldsymbol{\alpha}}>_{\text {lex }} \mathbf{x}^{\boldsymbol{\beta}}$ if and only if the leftmost non-zero entry of $\boldsymbol{\alpha}-\boldsymbol{\beta}$ is positive. Say this entry is in the t position. Then $\mathbf{x}^{\boldsymbol{\alpha}}>_{\text {lex }} \mathrm{x}^{\boldsymbol{\beta}}$ if and only if

$$
\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\alpha}=a_{i}=b_{i}=\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\beta} \text { for all } 1 \leq i \leq t-1
$$

and

$$
\mathbf{v}_{\mathbf{t}} \cdot \boldsymbol{\alpha}=a_{t}>b_{t}=\mathbf{v}_{\mathbf{t}} \cdot \boldsymbol{\beta}
$$

Therefore, $\mathrm{x}^{\alpha}>_{\text {lex }} \mathrm{x}^{\boldsymbol{\beta}}$ if and only if $\mathrm{x}^{\boldsymbol{\alpha}}>\mathrm{x}^{\boldsymbol{\beta}}$.
(b) Let $r=n$ and define vectors as follows:

$$
\begin{aligned}
\mathbf{v}_{\mathbf{1}} & =(1, \ldots, 1) \\
\mathbf{v}_{\mathbf{i}} & =(1,1, \ldots, 1, i-(n+1), 0,0, \ldots, 0)
\end{aligned}
$$

where the entry $i-(n+1)$ is in the $(n+2-i)$ th position for $i \in\{2, \ldots, n\}$. Show that $>$ is the graded reverse-lexicographic order.

Proof. Let $r=n$ and define vectors $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{i}}$ as above. We will show that $>$ is $>$ grevlex. To do this, we will show that $\boldsymbol{x}^{\boldsymbol{\alpha}}>\boldsymbol{x}^{\boldsymbol{\beta}}$ iff there exists $t \leq n$ such that $\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\beta}$ for $i \leq t-1$ and $\mathbf{v}_{\mathbf{t}} \cdot \boldsymbol{\alpha}>\mathbf{v}_{\mathbf{t}^{\prime}} \cdot \boldsymbol{\beta}$.

Let $\boldsymbol{\alpha}=\left(a_{1}, \ldots, a_{n}\right)$ and $\boldsymbol{\beta}=\left(b_{1}, \ldots, b_{n}\right)$ we have $\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\alpha}=|\boldsymbol{\alpha}|=\sum_{i=1}^{n} a_{i}$ and likewise for $\boldsymbol{\beta}$. Additionally, $\mathbf{v}_{\mathbf{2}} \cdot \boldsymbol{\alpha}=\sum_{i=1}^{n-1} a_{i}-n a_{n}$ and likewise for $\boldsymbol{\beta}$. Inductively, we can see that

$$
\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{i}-\mathbf{1}} \cdot \boldsymbol{\alpha}+(n+2-i)\left(a_{n-(i-3)}-a_{n-(i-2)}\right) \quad \text { for } i \geq 3
$$

and likewise for $\boldsymbol{\beta}$.
Suppose $\boldsymbol{x}^{\boldsymbol{\alpha}}>_{\text {grevlex }} \boldsymbol{x}^{\boldsymbol{\beta}}$ for $\boldsymbol{\alpha} \neq \boldsymbol{\beta}$. By definition, this happens IFF $\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\alpha}>\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\beta}$ or $\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\beta}$ and there exists s for which $0 \leq s<n$ such that $a_{n-i}=b_{n-i}$ for all $i<s$ and $a_{n-s}<b_{n-s}$. We will show that this is true IFF $x^{\alpha}>x^{\beta}$. To do so, we consider two cases.

Case 1: Assume $|\boldsymbol{\alpha}|>|\boldsymbol{\beta}|$. This holds IFF $\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\alpha}>\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\beta}$ which implies $\boldsymbol{x}^{\boldsymbol{\alpha}}>\boldsymbol{x}^{\boldsymbol{\beta}}$ and concludes Case 1.

Case 2: Assume $\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\beta}$ and there exists $s<n$ such that $a_{n-i}=b_{n-i}$ for all $i<s$ and $a_{n-s}<b_{n-s}$. Now $s=0$ IFF $\mathbf{v}_{\mathbf{2}} \cdot \boldsymbol{\alpha}>\mathbf{v}_{\mathbf{2}} \cdot \boldsymbol{\beta}$, as this holds IFF $-n a_{n}>-n b_{n}$ IFF $a_{n}<b_{n}$.

So, assume $s>0$. Since $\boldsymbol{\alpha} \neq \boldsymbol{\beta}$ but $|\boldsymbol{\alpha}|=\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}=|\boldsymbol{\beta}|, \boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ must differ in at least two entries, so $a_{n-i}=b_{n-i}$ for $i<s$ means that $s \leq n-2$. Thus, we are considering s for which $1 \leq s \leq n-2$.

Notice that $1 \leq s \leq n-2$ implies that $\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\beta}$ and $\mathbf{v}_{\mathbf{2}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{2}} \cdot \boldsymbol{\beta}$. Using (1), we see that $\mathbf{v}_{\mathbf{3}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{2}} \cdot \boldsymbol{\alpha}+(n-1)\left(a_{n}-a_{n-1}\right)$ (and likewise for $\left.\boldsymbol{\beta}\right)$, so $\mathbf{v}_{\mathbf{3}} \cdot \boldsymbol{\alpha}-\mathbf{v}_{\mathbf{3}} \cdot \boldsymbol{\beta}=(n-1)\left(b_{n-1}-a_{n-1}\right)$, so $\mathbf{v}_{\mathbf{3}} \cdot \boldsymbol{\alpha}>\mathbf{v}_{\mathbf{3}} \cdot \boldsymbol{\beta}$ IFF $a_{n-1}<b_{n-1}$ and $\mathbf{v}_{\mathbf{3}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{3}} \cdot \boldsymbol{\beta}$ IFF $a_{n-1}=b_{n-1}$.

Define $t=s+2$. Continuing like this, we see for all $t>i \geq 3$ that

$$
\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\alpha}-\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\beta}=(n+2-i)\left(b_{n-(i-2)}-a_{n-(i-2)}\right) .
$$

Thus, for all such $i, \mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\beta}$. Now, if $i=s+2=t$,

$$
\mathbf{v}_{\mathbf{t}} \cdot \boldsymbol{\alpha}-\mathbf{v}_{\mathbf{t}} \cdot \boldsymbol{\beta}=(n+2-(s+2))\left(b_{n-(s+2-2)}-a_{n-(s+2-2)}\right)=(n-s)\left(b_{n-s}-a_{n-s}\right)>0 .
$$

In other words, $a_{n-s}<b_{n-s}$ IFF $\mathbf{v}_{\mathbf{t}} \cdot \boldsymbol{\alpha}>\mathbf{v}_{\mathbf{t}} \cdot \boldsymbol{\beta}$. Thus, $a_{n-s}<b_{n-s}$ implies $\boldsymbol{x}^{\boldsymbol{\alpha}}>\boldsymbol{x}^{\boldsymbol{\beta}}$.
Now, if $x^{\alpha}>x^{\beta}$, either the converse of the last conclusion of Case 1 is true (i.e., $x^{\alpha}>x^{\beta}$ implies $\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\alpha}>\mathbf{v}_{\mathbf{1}} \cdot \boldsymbol{\beta}$), or that of Case 2 is true (i.e., $\boldsymbol{x}^{\boldsymbol{\alpha}}>\boldsymbol{x}^{\boldsymbol{\beta}}$ implies $|\boldsymbol{\alpha}|=|\boldsymbol{\beta}|$ and $a_{n-s}<b_{n-s}$ for some $s \geq 0$), and, in either case, we may retrace the string of "if and only if"s from there to conclude that $x^{\boldsymbol{\alpha}}>_{\text {grevlex }} x^{\boldsymbol{\beta}}$.

