

Problem Set 3

Due: Thursday, April 15

This problem set involves choices! Submit solutions to 2 exercises from Part I and 1 exercise from Part II.

Part I - Exercises Related to Hilbert Functions & Regular Sequences

- (1) For parts (b) - (d) of this exercise use reverse-lexicographic order with $x_1 >_{\text{revlex}} > x_2 >_{\text{revlex}} \dots$.
 - (a) Find a $(3, 4, 5)$ -lex-plus-powers ideal $L \subset S = k[x_1, x_2, x_3]$ such that $H(S/L, 3) = 9$ and $H(S/L, 6) = 5$.
 - (b) Fix m to be a monomial of degree d in $S = k[x_1, x_2, x_3, x_4]/(x_1^5, x_2^4, x_3^4, x_4^3)$. Recall that $L(m)$ denotes the set of all degree d monomials in S which are greater than or equal to m . Decompose $|L(x_1^3 x_2^3 x_4^2)|$ in terms of integers of the form $\binom{e_1, \dots, e_j}{l}$. Give an algebraic description of each term in the decomposition.
 - (c) Assume $I \subset S = k[x_1, x_2, x_3, x_4]$ is a homogeneous ideal containing $\{x_1^5, x_2^4, x_3^4, x_4^3\}$. If $H(S/I, 8) = 17$, then what is the largest value possible for $H(S/I, 9)$?
 - (d) Assume that the EGH Conjecture is true. Can there be a homogeneous $(3, 4, 4, 5)$ -ideal $I \subset S = k[x_1, x_2, x_3, x_4]$ with $H(S/I) = (1, 4, 10, 18, 24, 29, \dots)$?
- (2) *EGH Points Conjecture in \mathbb{P}^2 :* Fix integers $2 \leq d_1 \leq d_2$. Let $\Delta\mathcal{H} = \{h_t\}_{t \geq 0}$ be the first difference Hilbert function of some finite set of distinct points in \mathbb{P}^2 such that $h_t \leq H(k[x_1, x_2]/(x_1^{d_1}, x_2^{d_2}), t)$ for all $t \geq 0$. Prove that there exist finite sets of distinct points $\mathbb{X} \subseteq \mathbb{Y} \subset \mathbb{P}^2$ where \mathbb{Y} is a complete intersection of type $\{d_1, d_2\}$ and $\Delta H(\mathbb{X}) = \Delta\mathcal{H}$ if and only if $h_{t+1} \leq h_t^{(t)}$ for all $t \geq 1$.
- (3) *Classical Cayley-Bacharach Theorem:* Let $\mathbb{X} = \{P_1, \dots, P_9\}$ be the complete intersection of two cubics in \mathbb{P}^2 . Use the Cayley-Bacharach Theorem to show that any cubic passing through 8 of the 9 points of \mathbb{X} must also pass through the remaining 9th point.

Part II - Exercises From Group Presentations

- (1) *From Croll-Gibbons-Johnson:* Our exercise outlines a proof of the following lemma due to Buchsbaum and Eisenbud:

Lemma. *Let R be a ring, $x \in R$, and $S = R/(x)$. Let B be an S -module, and let*

$$\mathcal{F} : \quad F_2 \xrightarrow{\phi_2} F_1 \xrightarrow{\phi_1} F_0$$

be an exact sequence of S -modules with $\text{coker}(\phi_1) \cong B$. Suppose that

$$\mathcal{G} : \quad G_2 \xrightarrow{\psi_2} G_1 \xrightarrow{\psi_1} G_0$$

is a complex of R -modules such that

- (i) x is a non-zero divisor on each G_i ,
- (ii) $G_i \otimes_R S \cong F_i$, and
- (iii) $\psi_i \otimes_R S = \phi_i$.

Then $A = \text{coker}(\psi_1)$ is a lifting of B to R .

- (a) With the conditions of the lemma and $i \in \{0, 1, 2\}$, prove that the sequence

$$0 \longrightarrow G_i \xrightarrow{\cdot x} G_i \xrightarrow{q} G_i/xG_i \longrightarrow 0$$

is exact, where $\cdot x$ is the map given by multiplication by x and q is the canonical quotient map.

- (b) In the diagram below, show that each square of the diagram commutes.

$$\begin{array}{ccccccc}
& 0 & 0 & 0 & & & \\
& \downarrow & \downarrow & \downarrow & & & \\
\cdots & \longrightarrow & 0 & \longrightarrow & G_2 & \xrightarrow{\psi_2} & G_1 \xrightarrow{\psi_1} G_0 \longrightarrow 0 \longrightarrow \cdots \\
& & \downarrow \cdot x & & \downarrow \cdot x & & \downarrow \cdot x \\
& \cdots & \longrightarrow & 0 & \longrightarrow & G_2 & \xrightarrow{\psi_2} G_1 \xrightarrow{\psi_1} G_0 \longrightarrow 0 \longrightarrow \cdots \\
& & \downarrow & & \downarrow & & \downarrow \\
& \cdots & \longrightarrow & 0 & \longrightarrow & F_2 & \xrightarrow{\phi_2} F_1 \xrightarrow{\phi_1} F_0 \longrightarrow 0 \longrightarrow \cdots \\
& & \downarrow & & \downarrow & & \downarrow \\
& & 0 & & 0 & & 0
\end{array}$$

Conclude that

$$0 \longrightarrow \mathcal{G} \xrightarrow{\cdot x} \mathcal{G} \longrightarrow \mathcal{F} \longrightarrow 0$$

is an exact sequence of complexes (briefly explain why each column is exact).

(c) Given any exact sequence of complexes $0 \longrightarrow D_{\cdot} \xrightarrow{\cdot x} D_{\cdot} \longrightarrow C_{\cdot} \longrightarrow 0$, there is a corresponding long exact sequence in homology given by

$$\begin{array}{ccccc}
\cdots & \longrightarrow & H_2(D_{\cdot}) & \longrightarrow & H_2(C_{\cdot}) \\
& & \swarrow & & \\
H_1(D_{\cdot}) & \xrightarrow{\cdot x} & H_1(D_{\cdot}) & \longrightarrow & H_1(C_{\cdot}) \\
& & \swarrow & & \\
H_0(D_{\cdot}) & \xrightarrow{\cdot x} & H_0(D_{\cdot}) & \longrightarrow & H_0(C_{\cdot}) \longrightarrow 0.
\end{array}$$

Use the long exact sequence in homology with the exact sequence of complexes to determine that $A/xA \cong B$ and x is a non-zero divisor on A . Conclude that A is a lifting of B to R .

(2) *From Brase-Denkert-Janssen:* Accept that any monomial ordering $>$ on $k[x_1, \dots, x_n]$ can be obtained by taking pairwise orthogonal vectors $\mathbf{v}_1, \dots, \mathbf{v}_r \in k^n$ where \mathbf{v}_1 has only non-negative entries and where $\mathbf{x}^{\alpha} > \mathbf{x}^{\beta}$ if and only if there exists $t \leq r$ such that $\mathbf{v}_i \cdot \alpha = \mathbf{v}_i \cdot \beta$ for all $i \leq t-1$ and $\mathbf{v}_t \cdot \alpha > \mathbf{v}_t \cdot \beta$.

(a) Let $r = n$ and $\mathbf{v}_i = \mathbf{e}_i$ for all i where \mathbf{e}_i is the i th standard basis vector for k^n . Show that $>$ is the lexicographic order.

(b) Let $r = n$ and define vectors as follows:

$$\mathbf{v}_1 = (1, \dots, 1)$$

$$\mathbf{v}_i = (1, 1, \dots, 1, i - (n+1), 0, 0, \dots, 0)$$

where the entry $i - (n+1)$ is in the $(n+2-i)$ th position for $i \in \{2, \dots, n\}$. Show that $>$ is the graded reverse-lexicographic order.