Problem Set 3

Due: Thursday, April 15

This problem set involves choices! Submit solutions to 2 exercises from Part I and 1 exercise from Part II.

Part I - Exercises Related to Hilbert Functions \& Regular Sequences

(1) For parts (b) - (d) of this exercise use reverse-lexicographic order with $x_{1}>_{\text {revlex }}>x_{2}>_{\text {revlex }} \cdots$.
(a) Find a (3,4,5)-lex-plus-powers ideal $L \subset S=k\left[x_{1}, x_{2}, x_{3}\right]$ such that $H(S / L, 3)=9$ and $H(S / L, 6)=5$.
(b) Fix m to be a monomial of degree d in $S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1}^{5}, x_{2}^{4}, x_{3}^{4}, x_{4}^{3}\right)$. Recall that $L(m)$ denotes the set of all degree d monomials in S which are greater than or equal to m. Decompose $\left|L\left(x_{1}^{3} x_{2}^{3} x_{4}^{2}\right)\right|$ in terms of integers of the form $\binom{e_{1}, \ldots, e_{j}}{l}$. Give an algebraic description of each term in the decomposition.
(c) Assume $I \subset S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is a homogeneous ideal containing $\left\{x_{1}^{5}, x_{2}^{4}, x_{3}^{4}, x_{4}^{3}\right\}$. If $H(S / I, 8)=17$, then what is the largest value possible for $H(S / I, 9)$?
(d) Assume that the EGH Conjecture is true. Can there be a homogeneous (3,4,4,5)-ideal $I \subset$ $S=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ with $H(S / I)=(1,4,10,18,24,29, \ldots) ?$
(2) EGH Points Conjecture in \mathbb{P}^{2} : Fix integers $2 \leq d_{1} \leq d_{2}$. Let $\Delta \mathcal{H}=\left\{h_{t}\right\}_{t \geq 0}$ be the first difference Hilbert function of some finite set of distinct points in \mathbb{P}^{2} such that $h_{t} \leq H\left(k\left[x_{1}, x_{2}\right] /\left(x_{1}^{d_{1}}, x_{2}^{d_{2}}\right), t\right)$ for all $t \geq 0$. Prove that there exist finite sets of distinct points $\mathbb{X} \subseteq \mathbb{Y} \subset \mathbb{P}^{2}$ where \mathbb{Y} is a complete intersection of type $\left\{d_{1}, d_{2}\right\}$ and $\Delta H(\mathbb{X})=\Delta \mathcal{H}$ if and only if $h_{t+1} \leq h_{t}^{(t)}$ for all $t \geq 1$.
(3) Classical Cayley-Bacharach Theorem: Let $\mathbb{X}=\left\{P_{1}, \ldots, P_{9}\right\}$ be the complete intersection of two cubics in \mathbb{P}^{2}. Use the Cayley-Bacharach Theorem to show that any cubic passing through 8 of the 9 points of \mathbb{X} must also pass through the remaining 9 th point.

Part II - Exercises From Group Presentations

(1) From Croll-Gibbons-Johnson: Our exercise outlines a proof of the following lemma due to Buchsbaum and Eisenbud:

Lemma. Let R be a ring, $x \in R$, and $S=R /(x)$. Let B be an S-module, and let

$$
\mathcal{F}: \quad F_{2} \xrightarrow{\phi_{2}} F_{1} \xrightarrow{\phi_{1}} F_{0}
$$

be an exact sequence of S-modules with $\operatorname{coker}\left(\phi_{1}\right) \cong B$. Suppose that

$$
\mathcal{G}: \quad G_{2} \xrightarrow{\psi_{2}} G_{1} \xrightarrow{\psi_{1}} G_{0}
$$

is a complex of R-modules such that
(i) x is a non-zero divisor on each G_{i},
(ii) $G_{i} \otimes_{R} S \cong F_{i}$, and
(iii) $\psi_{i} \otimes_{R} S=\phi_{i}$.

Then $A=\operatorname{coker}\left(\psi_{1}\right)$ is a lifting of B to R.
(a) With the conditions of the lemma and $i \in\{0,1,2\}$, prove that the sequence

$$
0 \longrightarrow G_{i} \xrightarrow{\cdot x} G_{i} \xrightarrow{q} G_{i} / x G_{i} \longrightarrow 0
$$

is exact, where $\cdot x$ is the map given by multiplication by x and q is the canonical quotient map.
(b) In the diagram below, show that each square of the diagram commutes.

Conclude that

$$
0 \longrightarrow \mathcal{G} \xrightarrow{\cdot x} \mathcal{G} \longrightarrow \mathcal{F} \longrightarrow 0
$$

is an exact sequence of complexes (briefly explain why each column is exact).
(c) Given any exact sequence of complexes $0 \longrightarrow D . \xrightarrow{\cdot x} D . \longrightarrow C . \longrightarrow 0$, there is a corresponding long exact sequence in homology given by

Use the long exact sequence in homology with the exact sequence of complexes to determine that $A / x A \cong B$ and x is a non-zero divisor on A. Conclude that A is a lifting of B to R.
(2) From Brase-Denkert-Janssen: Accept that any monomial ordering $>$ on $k\left[x_{1}, \ldots, x_{n}\right]$ can be obtained by taking pairwise orthogonal vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}} \in k^{n}$ where $\mathbf{v}_{\mathbf{1}}$ has only non-negative entries and where $\mathbf{x}^{\boldsymbol{\alpha}}>\mathbf{x}^{\boldsymbol{\beta}}$ if and only if there exists $t \leq r$ such that $\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\alpha}=\mathbf{v}_{\mathbf{i}} \cdot \boldsymbol{\beta}$ for all $i \leq t-1$ and $\mathrm{v}_{\mathrm{t}} \cdot \boldsymbol{\alpha}>\mathrm{v}_{\mathrm{t}} \cdot \boldsymbol{\beta}$.
(a) Let $r=n$ and $\mathbf{v}_{\mathbf{i}}=\mathbf{e}_{\mathbf{i}}$ for all i where $\mathbf{e}_{\mathbf{i}}$ is the i th standard basis vector for k^{n}. Show that $>$ is the lexicographic order.
(b) Let $r=n$ and define vectors as follows:

$$
\begin{aligned}
\mathbf{v}_{\mathbf{1}} & =(1, \ldots, 1) \\
\mathbf{v}_{\mathbf{i}} & =(1,1, \ldots, 1, i-(n+1), 0,0, \ldots, 0)
\end{aligned}
$$

where the entry $i-(n+1)$ is in the $(n+2-i)$ th position for $i \in\{2, \ldots, n\}$. Show that $>$ is the graded reverse-lexicographic order.

