Problem Set 2 Solutions

Due: Thursday, March 25
(1) Fix $\mathcal{H}:=(1,4,6,9,10,13,13, \ldots)$ and let $S:=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ where k is a field. Does there exist a homogeneous ideal $I \subset S$ such that $H(S / I)=\mathcal{H}$? Provide two reasons for your answer: one using an O-sequence approach and one using an order ideal of monomials approach.
Solution: Denote the i th component of \mathcal{H} by d_{i} for $i \geq 0$.

- O-Sequence Approach: In order for $\mathcal{H}=H(S / I)$ for some homogeneous ideal I we need $d_{i+1} \leq d_{i}^{<i>}$ for $i \geq 1$ and $d_{0}=1$. Consider $i=4$. We calculate the 4 -binomial expansion of $d_{4}=10$ to be:

$$
10=\binom{5}{4}+\binom{4}{3}+\binom{2}{2}
$$

Thus,

$$
10^{<4>}=\binom{6}{5}+\binom{5}{4}+\binom{3}{3}=6+5+1=12
$$

But $d_{5}=13>10^{<4>}=12$ and so \mathcal{H} is not an O-sequence. By Macaulay's Theorem we conclude that there is no homogeneous ideal $I \subset S$ such that $H(S / I)=\mathcal{H}$.

- Order Ideal of Monomials Approach: For what follows we use the degree reverse lexicographic ordering with $x_{1}>x_{2}>\cdots>x_{n}$. Let $\mathcal{M}=\cup_{t \geq 0} \mathcal{M}_{t}$, where \mathcal{M}_{t} is the set of d_{t} largest monomials of degree t. Setting $t=4$ and $t=5$ we find

$$
\mathcal{M}_{4}=\left\{x_{1}^{4}, x_{1}^{3} x_{2}, x_{1}^{2} x_{2}^{2}, x_{1} x_{2}^{3}, x_{2}^{4}, x_{1}^{3} x_{3}, x_{1}^{2} x_{2} x_{3}, x_{1} x_{2}^{2} x_{3}, x_{2}^{3} x_{3}, x_{1}^{2} x_{3}^{2}\right\}
$$

and
$\mathcal{M}_{5}=\left\{x_{1}^{5}, x_{1}^{4} x_{2}, x_{1}^{3} x_{2}^{2}, x_{1}^{2} x_{2}^{3}, x_{1} x_{2}^{4}, x_{2}^{5}, x_{1}^{4} x_{3}, x_{1}^{3} x_{2} x_{3}, x_{1}^{2} x_{2}^{2} x_{3}, x_{1} x_{2}^{3} x_{3}, x_{2}^{4} x_{3}, x_{1}^{3} x_{3}^{2}, x_{1}^{2} x_{2} x_{3}^{2}\right\}$.
Note that $x_{1} x_{2} x_{3}^{2}$ is of degree 4 and divides $x_{1}^{2} x_{2} x_{3}^{2} \in \mathcal{M}_{5}$. However, $x_{1} x_{2} x_{3}^{2} \notin \mathcal{M}_{4}$. We conclude that \mathcal{M} is not an order ideal of monomials. So, by Macaulay's Theorem, there does not exist a homogeneous ideal $I \subset S$ with $H(S / I)=\mathcal{H}$.
(2) For this exercise we use the same notation that was set up in our discussion of lifting monomial ideals. Let $f=\mathrm{x}^{\boldsymbol{\alpha}} \in S=k\left[x_{1}, \ldots, x_{n}\right]$. Prove the following two facts:
(a) $\bar{f}(\overline{\boldsymbol{\beta}})=0$ if and only if $\boldsymbol{\alpha} \not \leq \boldsymbol{\beta}$;

Proof. Let $\boldsymbol{\alpha}=\left(a_{1}, \ldots, a_{n}\right)$ and $\boldsymbol{\beta}=\left(b_{1}, \ldots, b_{n}\right)$. Recall that

$$
\bar{f}=\prod_{j=1}^{n} \prod_{i=0}^{a_{j}-1}\left(x_{j}-t_{j, i} x_{0}\right)
$$

and

$$
\overline{\boldsymbol{\beta}}=\left[1: t_{1, b_{1}}: t_{2, b_{2}}: \cdots: t_{n, b_{n}}\right] .
$$

Using the fact that the $t_{l, m}$ are chosen to be distinct for a fixed l, we see that

$$
\begin{aligned}
\bar{f}(\overline{\boldsymbol{\beta}})=0 & \Longleftrightarrow t_{j, b_{j}}=t_{j, i} \text { for some } 1 \leq j \leq n \text { and some } 0 \leq i \leq a_{j}-1 \\
& \Longleftrightarrow b_{j}=i \text { for some } 1 \leq j \leq n \text { and some } 0 \leq i \leq a_{j}-1 \\
& \Longleftrightarrow b_{j}<a_{j} \text { for some } 1 \leq j \leq n \\
& \Longleftrightarrow \boldsymbol{\alpha} \not \leq \boldsymbol{\beta} .
\end{aligned}
$$

(b) $\bar{f}(\bar{\gamma})=0$ for all $\boldsymbol{\gamma}$ with $\operatorname{deg}(\gamma) \leq \operatorname{deg}(\boldsymbol{\alpha})$ (except for $\boldsymbol{\alpha}$ itself).

Proof. Let $\boldsymbol{\alpha}=\left(a_{1}, \ldots, a_{n}\right)$ and $\boldsymbol{\gamma}=\left(c_{1}, \ldots, c_{n}\right)$ where $\operatorname{deg}(\boldsymbol{\gamma})=\operatorname{deg}(\boldsymbol{\alpha})$ and $\boldsymbol{\gamma} \neq \boldsymbol{\alpha}$. It is easy to see that if $\operatorname{deg}(\gamma)<\operatorname{deg}(\boldsymbol{\alpha})$ then there is some j such that $c_{j}<a_{j}$. If $\operatorname{deg}(\boldsymbol{\alpha})=\operatorname{deg}(\boldsymbol{\gamma})$ then again there must exist j such that $c_{j}<a_{j}$; otherwise $c_{i} \geq a_{i}$ for all i implying that $\boldsymbol{\alpha}=\boldsymbol{\gamma}$ since $\sum_{i=1}^{n} c_{i}=\sum_{i=1}^{n} a_{i}$, a contradiction to the assumption $\boldsymbol{\alpha} \neq \boldsymbol{\gamma}$. We conclude that $\boldsymbol{\alpha} \not \leq \boldsymbol{\gamma}$. Applying part (a) gives $\bar{f}(\bar{\gamma})=0$ as desired.
(3) In this exercise we further explore Hilbert functions of distinct points in projective 2-space. Let $S=k\left[x_{1}, x_{2}\right]$, where k is an algebraically closed field of characteristic zero. Further, let $J \subset S$ be a homogeneous ideal such that $\sqrt{J}=\left(x_{1}, x_{2}\right)$. We set $\alpha(J)$ to be the least degree of a non-zero homogeneous polynomial in J.
(a) Set $B=S / J$. Prove that

$$
H(B, t)= \begin{cases}t+1 & \text { for } t<\alpha(J) \\ \leq \alpha(J) & \text { for } t \geq \alpha(J)\end{cases}
$$

Proof. First observe that

$$
H(B, t)=\operatorname{dim}_{k}\left(S_{t}\right)-\operatorname{dim}_{k}\left(J_{t}\right)=(t+1)-\operatorname{dim}_{k}\left(J_{t}\right) .
$$

For $t<\alpha(J)$, we have that $J_{t}=0$ and so $H(B, t)=t+1$. For the second part of the claim, note that there exists a non-zero element $F \in J$ such that $\operatorname{deg}(F)=\alpha(J)$. Hence, $\operatorname{dim}_{k}\left(J_{\alpha(J)}\right) \geq 1$ and so $H(B, \alpha(J)) \leq(\alpha(J)+1)-1=\alpha(J)$. Finally, fix $t>\alpha(J)$. We have that $(F) \subseteq J$ and so

$$
\operatorname{dim}_{k}\left(S_{t-\alpha(J)}\right)=\operatorname{dim}_{k}\left((F)_{t}\right) \leq \operatorname{dim}_{k}\left(J_{t}\right)
$$

Therefore,

$$
\begin{aligned}
H(B, t) & =\operatorname{dim}_{k}\left(S_{t}\right)-\operatorname{dim}_{k}\left(J_{t}\right) \\
& \leq \operatorname{dim}_{k}\left(S_{t}\right)-\operatorname{dim}_{k}\left((F)_{t}\right) \\
& =\operatorname{dim}_{k}\left(S_{t}\right)-\operatorname{dim}_{k}\left(S_{t-\alpha(J)}\right) \\
& =(t+1)-(t-\alpha(J)+1) \\
& =\alpha(J) .
\end{aligned}
$$

(b) Let $V \subset S_{t}$ be a non-zero subspace of S_{t}. Denote by $S_{1} V$ the subspace of S_{t+1} generated by $\left\{L v \mid L \in S_{1}\right.$ and $\left.v \in V\right\}$. Prove that

$$
\operatorname{dim}_{k}\left(S_{1} V\right) \geq\left(\operatorname{dim}_{k} V\right)+1
$$

Proof. Let F_{1}, \ldots, F_{l} be a basis for V. It is clear that $\left\{x_{1} F_{1}, \ldots, x_{l} F_{l}, x_{2} F_{1}, \ldots, x_{2} F_{l}\right\}$ spans $S_{1} V$ and $\left\{x_{1} F_{1}, \ldots, x_{1} F_{l}\right\}$ is a linearly independent set. We will be done if we can show that $x_{2} F_{j}$ is not in the span of $\left\{x_{1} F_{1}, \ldots, x_{1} F_{l}\right\}$ for some j.
For $1 \leq i \leq l$ write $F_{i}=x_{1}^{q} F_{i}^{\prime}$, where q is chosen so that x_{1} does not divide some F_{j}^{\prime} ($q=0$ is possible). We claim that $x_{2} F_{j}$ is not in the span of $\left\{x_{1} F_{1}, \ldots, x_{1} F_{l}\right\}$. To see this, assume to the contrary that we can find constants $c_{1}, \ldots, c_{l} \in k$ such that

$$
\sum_{i=1}^{l} c_{i} x_{1} F_{i}=x_{2} F_{j}
$$

Then

$$
x_{1}^{q+1} \sum_{i=1}^{l} c_{i} F_{i}^{\prime}=x_{2} x_{1}^{q} F_{j}^{\prime}
$$

which implies that x_{1} divides F_{j}^{\prime}, a contradiction.
(c) Let $\mathbb{X}=\left\{P_{1}, \ldots, P_{t}\right\}$ be a set of distinct points in \mathbb{P}^{2}. We set $\alpha=\alpha(\mathbb{X})$ to be the least degree of a non-zero homogeneous polynomial in $I(\mathbb{X})$. Show that $\Delta H(\mathbb{X})$ has the form

$$
\Delta H(\mathbb{X})=\{1,2,3, \ldots, \alpha-1, \alpha, \Delta H(\mathbb{X}, \alpha), \Delta H(\mathbb{X}, \alpha+1), \ldots\}
$$

where $\alpha \geq \Delta H(\mathbb{X}, \alpha) \geq \Delta H(\mathbb{X}, \alpha+1) \geq \Delta H(\mathbb{X}, \alpha+2) \geq \cdots$.
Proof. Let $R=k\left[x_{0}, x_{1}, x_{2}\right]$ and $I=I(\mathbb{X})$. Since \mathbb{X} is a finite set of distinct points there is a linear form which misses \mathbb{X} entirely. After a linear change of variables, we may assume this linear form is x_{0}. Then x_{0} is a non-zero-divisor in $A=R / I$. Note that $R /\left(I, x_{0}\right) \cong S / J$ where J the homogeneous ideal obtained by setting $x_{0}=0$ in the generators of I. In addition, $\sqrt{J}=\left(x_{1}, x_{2}\right)$ and $H(S / J)=\Delta H(\mathbb{X})$. Part (a) can be applied to see that $\Delta H(\mathbb{X}, t)=t+1$ for $t<\alpha$ and $\Delta H(\mathbb{X}, t) \leq \alpha$ for $t \geq \alpha$.
To see that $\Delta H(\mathbb{X}, \alpha+t) \geq \Delta H(\mathbb{X}, \alpha+t+1)$ for all $t \geq 0$, note that $S_{1} J_{\alpha+t} \subseteq J_{\alpha+t+1}$. Thus, by part (b), $\operatorname{dim}_{k}\left(J_{\alpha+t+1}\right) \geq \operatorname{dim}_{k}\left(S_{1} J_{\alpha+t}\right) \geq \operatorname{dim}_{k}\left(J_{\alpha+t}\right)+1$. Therefore,

$$
\begin{aligned}
& \operatorname{dim}_{k}\left(J_{\alpha+t+1}\right) \geq \operatorname{dim}_{k}\left(J_{\alpha+t}\right)+1 \\
\Longrightarrow & \alpha+t+1-\operatorname{dim}_{k}\left(J_{\alpha+t}\right) \geq \alpha+t+2-\operatorname{dim}_{k}\left(J_{\alpha+t+1}\right) \\
\Longrightarrow & \operatorname{dim}_{k}\left(S_{\alpha+t}\right)-\operatorname{dim}_{k}\left(J_{\alpha+t}\right) \geq \operatorname{dim}_{k}\left(S_{\alpha+t+1}\right)-\operatorname{dim}_{k}\left(J_{\alpha+t+1}\right) \\
\Longrightarrow & H(S / J, \alpha+t) \geq H(S / J, \alpha+t+1) \\
\Longrightarrow & \Delta H(\mathbb{X}, \alpha+t) \geq \Delta H(\mathbb{X}, \alpha+t+1) .
\end{aligned}
$$

(4) Find all possible Hilbert functions for 9 distinct points in \mathbb{P}^{2}. Pick one of the Hilbert functions \mathcal{H} and find a set $\mathbb{X} \subset \mathbb{P}^{2}$ of 9 distinct points in \mathbb{P}^{2} such that $H(\mathbb{X})=\mathcal{H}$. How do you know that the constructed set of points has the selected Hilbert function?

Solution: There are 8 possible Hilbert functions for 9 distinct points in \mathbb{P}^{2}. The possible sequences are listed in the following table:

	$H(\mathbb{X})$	$\Delta H(\mathbb{X})$
A	$(1,2,3,4,5,6,7,8,9,9, \ldots)$	$(1,1,1,1,1,1,1,1,1,0,0, \ldots)$
B	$(1,3,4,5,6,7,8,9,9, \ldots)$	$(1,2,1,1,1,1,1,1,0,0, \ldots)$
C	$(1,3,5,6,7,8,9,9, \ldots)$	$(1,2,2,1,1,1,1,0,0, \ldots)$
D	$(1,3,5,7,8,9,9, \ldots)$	$(1,2,2,2,1,1,0,0, \ldots)$
E	$(1,3,5,7,9,9, \ldots)$	$(1,2,2,2,2,0,0, \ldots)$
F	$(1,3,6,7,8,9,9, \ldots)$	$(1,2,3,1,1,1,0,0, \ldots)$
G	$(1,3,6,8,9,9, \ldots)$	$(1,2,3,2,1,0,0, \ldots)$
H	$(1,3,6,9,9, \ldots)$	$(1,2,3,3,0,0, \ldots)$

To argue that these are all the possible Hilbert functions, the following facts will be useful:

- $H(\mathbb{X})$ is a differentiable O-sequence with $H(\mathbb{X}, 1) \leq 3$
- $H(\mathbb{X}, d) \leq 9$ for all $d \geq 0$
- $H(\mathbb{X}, d)=9$ for $d \geq 8$
- $\sum_{t=0}^{8} \Delta H(\mathbb{X}, t)=9$ (this follows immediately from the above facts)

We know that $1 \leq H(\mathbb{X}, 1) \leq 3$ and so $1 \leq \Delta H(\mathbb{X}, 1) \leq 2$. We consider these 2 cases. The details of each case is argued by carefully considering the above facts.
(1) Suppose $\Delta H(\mathbb{X}, 1)=1$. Since $\Delta H(\mathbb{X})$ is an O-sequence, $\Delta H(\mathbb{X}, t) \leq 1$ for $t \geq 2$. The only possible sequence for $H(\mathbb{X})$ is the sequence in Case A .
(2) Suppose $\Delta H(\mathbb{X}, 1)=2$. Then, since $\Delta H(\mathbb{X})$ is an O-sequence, $1 \leq \Delta H(\mathbb{X}, 2) \leq 3$. This leads to 3 possible situations.
(i) If $\Delta H(\mathbb{X}, 2)=1$ then $\Delta H(\mathbb{X}, t) \leq 1$ for $t \geq 2$. This gives Case B .
(ii) If $\Delta H(\mathbb{X}, 2)=2$ then $1 \leq \Delta H(\mathbb{X}, 3) \leq 2$. If $\Delta H(\mathbb{X}, 3)=1$ then we must be in Case C. If $\Delta H(\mathbb{X}, 3)=2$ then $1 \leq \Delta H(\mathbb{X}, 4) \leq 2$: if $\Delta H(\mathbb{X}, 4)=1$ then we must be in Case D ; if $\Delta H(\mathbb{X}, 4)=2$ then we are in Case E .
(iii) If $\Delta H(\mathbb{X}, 2)=3$ then $1 \leq \Delta H(\mathbb{X}, 3) \leq 4$. If $\Delta H(\mathbb{X}, 3)=1$ then we must be in Case F . If $\Delta H(\mathbb{X}, 3)=2$ then $\Delta H(\mathbb{X}, 4)=1$ giving Case G. If $\Delta H(\mathbb{X}, 3)=$ 3 then $\Delta H(\mathbb{X}, 4)=0$ giving Case H . We can never have $\Delta H(\mathbb{X}, 3)=4$ since $\sum_{t=0}^{8} \Delta H(\mathbb{X}, t)=9$.

We now concentrate on $\mathcal{H}=(1,3,5,7,8,9,9, \ldots)$. Using the method of lifting monomial ideals with $t_{j, i}=i$ gives $H(\mathbb{X})=\mathcal{H}$ where
$\mathbb{X}=\{[1: 0: 0],[1: 1: 0],[1: 0: 1],[1: 2: 0],[1: 1: 1],[1: 3: 0],[1: 2: 1],[1: 4: 0],[1: 5: 0]\}$.
(5) Suppose that I is a homogeneous ideal in the ring $R=k\left[x_{0}, \ldots, x_{n}\right]$ where k is an algebraically closed field of characteristic 0 . Suppose that $I_{d} \neq 0$ and that $H(R / I)$ has maximal growth in degree d. Prove that I_{d} and I_{d+1} have a greatest common divisor of positive degree in the following two cases:
(a) $n=1$ and $H(R / I, d) \geq 1$;

Proof. From our discussion on maximal growth of Hilbert functions it suffices to demonstrate that $\operatorname{PGCD}\left(I_{d}\right)$ is positive. We have

$$
P G C D\left(I_{d}\right)=\max \left\{j \mid f_{1, j}(d) \leq H(R / I, d)\right\}
$$

where by definition

$$
f_{1, j}=\binom{d+1}{1}-\binom{d-j+1}{1}=(d+1)-(d-j+1)=j .
$$

Setting $j=1$, we see that $1=f_{1,1} \leq H(R / I, d)$. Hence $\operatorname{PGCD}\left(I_{d}\right)>0$ and we are done.
(b) $n=2$ and $H(R / I, d) \geq d+1$.

Proof. As in part (a), it suffices to demonstrate that $\operatorname{PGCD}\left(I_{d}\right)$ is positive. We have

$$
P G C D\left(I_{d}\right)=\max \left\{j \mid f_{2, j}(d) \leq H(R / I, d)\right\},
$$

where

$$
f_{2, j}=\binom{d+2}{2}-\binom{d-j+2}{2}
$$

Setting $j=1$, we see that

$$
f_{2,1}=\binom{d+2}{2}-\binom{d+1}{2}=d+1 \leq H(R / I, d)
$$

We conclude that $\operatorname{PGCD}\left(I_{d}\right)>0$ which completes the proof.

