Problem Set 2 Solutions

Due: Thursday, March 25

(1) Fix $\mathcal{H} := (1, 4, 6, 9, 10, 13, 13, ...)$ and let $S := k[x_1, x_2, x_3, x_4]$ where k is a field. Does there exist a homogeneous ideal $I \subset S$ such that $H(S/I) = \mathcal{H}$? Provide two reasons for your answer: one using an O-sequence approach and one using an order ideal of monomials approach.

Solution: Denote the *i*th component of \mathcal{H} by d_i for $i \geq 0$.

• O-Sequence Approach: In order for $\mathcal{H} = H(S/I)$ for some homogeneous ideal I we need $d_{i+1} \leq d_i^{\langle i \rangle}$ for $i \geq 1$ and $d_0 = 1$. Consider i = 4. We calculate the 4-binomial expansion of $d_4 = 10$ to be:

$$10 = \binom{5}{4} + \binom{4}{3} + \binom{2}{2}.$$

Thus,

$$10^{<4>} = \binom{6}{5} + \binom{5}{4} + \binom{3}{3} = 6 + 5 + 1 = 12.$$

But $d_5 = 13 > 10^{\langle 4 \rangle} = 12$ and so \mathcal{H} is not an O-sequence. By Macaulay's Theorem we conclude that there is no homogeneous ideal $I \subset S$ such that $H(S/I) = \mathcal{H}$.

• Order Ideal of Monomials Approach: For what follows we use the degree reverse lexicographic ordering with $x_1 > x_2 > \cdots > x_n$. Let $\mathcal{M} = \bigcup_{t \ge 0} \mathcal{M}_t$, where \mathcal{M}_t is the set of d_t largest monomials of degree t. Setting t = 4 and t = 5 we find

$$\mathcal{M}_4 = \{x_1^4, x_1^3 x_2, x_1^2 x_2^2, x_1 x_2^3, x_2^4, x_1^3 x_3, x_1^2 x_2 x_3, x_1 x_2^2 x_3, x_2^3 x_3, x_1^2 x_2^3\}$$

and

$$\mathcal{M}_5 = \{x_1^5, x_1^4 x_2, x_1^3 x_2^2, x_1^2 x_2^3, x_1 x_2^4, x_2^5, x_1^4 x_3, x_1^3 x_2 x_3, x_1^2 x_2^2 x_3, x_1 x_2^3 x_3, x_2^4 x_3, x_1^3 x_3^2, x_1^2 x_2 x_3^2\}$$

Note that $x_1x_2x_3^2$ is of degree 4 and divides $x_1^2x_2x_3^2 \in \mathcal{M}_5$. However, $x_1x_2x_3^2 \notin \mathcal{M}_4$. We conclude that \mathcal{M} is not an order ideal of monomials. So, by Macaulay's Theorem, there does not exist a homogeneous ideal $I \subset S$ with $H(S/I) = \mathcal{H}$.

(2) For this exercise we use the same notation that was set up in our discussion of lifting monomial ideals. Let f = x^α ∈ S = k[x₁,...,x_n]. Prove the following two facts:
(a) f(β) = 0 if and only if α ≤ β;

Proof. Let
$$\boldsymbol{\alpha} = (a_1, \dots, a_n)$$
 and $\boldsymbol{\beta} = (b_1, \dots, b_n)$. Recall that

$$\overline{f} = \prod_{j=1}^n \prod_{i=0}^{a_j-1} (x_j - t_{j,i}x_0)$$

and

$$\boldsymbol{\beta} = [1: t_{1,b_1}: t_{2,b_2}: \dots : t_{n,b_n}]$$

Using the fact that the $t_{l,m}$ are chosen to be distinct for a fixed l, we see that

$$\overline{f}(\overline{\beta}) = 0 \iff t_{j,b_j} = t_{j,i} \text{ for some } 1 \leq j \leq n \text{ and some } 0 \leq i \leq a_j - 1$$
$$\iff b_j = i \text{ for some } 1 \leq j \leq n \text{ and some } 0 \leq i \leq a_j - 1$$
$$\iff b_j < a_j \text{ for some } 1 \leq j \leq n$$
$$\iff \alpha \leq \beta.$$

(b) $\overline{f}(\overline{\gamma}) = 0$ for all γ with deg $(\gamma) \leq \text{deg}(\alpha)$ (except for α itself).

Proof. Let $\boldsymbol{\alpha} = (a_1, \ldots, a_n)$ and $\boldsymbol{\gamma} = (c_1, \ldots, c_n)$ where $\deg(\boldsymbol{\gamma}) = \deg(\boldsymbol{\alpha})$ and $\boldsymbol{\gamma} \neq \boldsymbol{\alpha}$. It is easy to see that if $\deg(\boldsymbol{\gamma}) < \deg(\boldsymbol{\alpha})$ then there is some j such that $c_j < a_j$. If $\deg(\boldsymbol{\alpha}) = \deg(\boldsymbol{\gamma})$ then again there must exist j such that $c_j < a_j$; otherwise $c_i \geq a_i$ for all i implying that $\boldsymbol{\alpha} = \boldsymbol{\gamma}$ since $\sum_{i=1}^n c_i = \sum_{i=1}^n a_i$, a contradiction to the assumption $\boldsymbol{\alpha} \neq \boldsymbol{\gamma}$. We conclude that $\boldsymbol{\alpha} \not\leq \boldsymbol{\gamma}$. Applying part (a) gives $\overline{f}(\overline{\boldsymbol{\gamma}}) = 0$ as desired. \Box

(3) In this exercise we further explore Hilbert functions of distinct points in projective 2-space. Let $S = k[x_1, x_2]$, where k is an algebraically closed field of characteristic zero. Further, let $J \subset S$ be a homogeneous ideal such that $\sqrt{J} = (x_1, x_2)$. We set $\alpha(J)$ to be the least degree of a non-zero homogeneous polynomial in J.

(a) Set B = S/J. Prove that

$$H(B,t) = \begin{cases} t+1 & \text{for } t < \alpha(J) \\ \leq \alpha(J) & \text{for } t \geq \alpha(J). \end{cases}$$

Proof. First observe that

$$H(B,t) = \dim_k(S_t) - \dim_k(J_t) = (t+1) - \dim_k(J_t).$$

For $t < \alpha(J)$, we have that $J_t = 0$ and so H(B,t) = t + 1. For the second part of the claim, note that there exists a non-zero element $F \in J$ such that $\deg(F) = \alpha(J)$. Hence, $\dim_k(J_{\alpha(J)}) \ge 1$ and so $H(B, \alpha(J)) \le (\alpha(J) + 1) - 1 = \alpha(J)$. Finally, fix $t > \alpha(J)$. We have that $(F) \subseteq J$ and so

$$\dim_k(S_{t-\alpha(J)}) = \dim_k((F)_t) \le \dim_k(J_t).$$

Therefore,

$$H(B,t) = \dim_k(S_t) - \dim_k(J_t)$$

$$\leq \dim_k(S_t) - \dim_k((F)_t)$$

$$= \dim_k(S_t) - \dim_k(S_{t-\alpha(J)})$$

$$= (t+1) - (t - \alpha(J) + 1)$$

$$= \alpha(J).$$

(b) Let $V \subset S_t$ be a non-zero subspace of S_t . Denote by S_1V the subspace of S_{t+1} generated by $\{Lv \mid L \in S_1 \text{ and } v \in V\}$. Prove that

$$\dim_k(S_1V) \ge (\dim_k V) + 1.$$

Proof. Let F_1, \ldots, F_l be a basis for V. It is clear that $\{x_1F_1, \ldots, x_lF_l, x_2F_1, \ldots, x_2F_l\}$ spans S_1V and $\{x_1F_1, \ldots, x_1F_l\}$ is a linearly independent set. We will be done if we can show that x_2F_j is not in the span of $\{x_1F_1, \ldots, x_1F_l\}$ for some j.

For $1 \leq i \leq l$ write $F_i = x_1^q F'_i$, where q is chosen so that x_1 does not divide some F'_j (q = 0 is possible). We claim that x_2F_j is not in the span of $\{x_1F_1, \ldots, x_1F_l\}$. To see this, assume to the contrary that we can find constants $c_1, \ldots, c_l \in k$ such that

$$\sum_{i=1}^{l} c_i x_1 F_i = x_2 F_j$$

Then

$$x_1^{q+1} \sum_{i=1}^l c_i F'_i = x_2 x_1^q F'_j$$

which implies that x_1 divides F'_i , a contradiction.

(c) Let $\mathbb{X} = \{P_1, \ldots, P_t\}$ be a set of distinct points in \mathbb{P}^2 . We set $\alpha = \alpha(\mathbb{X})$ to be the least degree of a non-zero homogeneous polynomial in $I(\mathbb{X})$. Show that $\Delta H(\mathbb{X})$ has the form

$$\Delta H(\mathbb{X}) = \{1, 2, 3, \dots, \alpha - 1, \alpha, \Delta H(\mathbb{X}, \alpha), \Delta H(\mathbb{X}, \alpha + 1), \dots\}$$

where $\alpha \ge \Delta H(\mathbb{X}, \alpha) \ge \Delta H(\mathbb{X}, \alpha + 1) \ge \Delta H(\mathbb{X}, \alpha + 2) \ge \cdots$.

Proof. Let $R = k[x_0, x_1, x_2]$ and $I = I(\mathbb{X})$. Since \mathbb{X} is a finite set of distinct points there is a linear form which misses \mathbb{X} entirely. After a linear change of variables, we may assume this linear form is x_0 . Then x_0 is a non-zero-divisor in A = R/I. Note that $R/(I, x_0) \cong S/J$ where J the homogeneous ideal obtained by setting $x_0 = 0$ in the generators of I. In addition, $\sqrt{J} = (x_1, x_2)$ and $H(S/J) = \Delta H(\mathbb{X})$. Part (a) can be applied to see that $\Delta H(\mathbb{X}, t) = t + 1$ for $t < \alpha$ and $\Delta H(\mathbb{X}, t) \leq \alpha$ for $t \geq \alpha$.

To see that $\Delta H(\mathbb{X}, \alpha + t) \geq \Delta H(\mathbb{X}, \alpha + t + 1)$ for all $t \geq 0$, note that $S_1 J_{\alpha+t} \subseteq J_{\alpha+t+1}$. Thus, by part (b), $\dim_k(J_{\alpha+t+1}) \geq \dim_k(S_1 J_{\alpha+t}) \geq \dim_k(J_{\alpha+t}) + 1$. Therefore,

$$\dim_k(J_{\alpha+t+1}) \ge \dim_k(J_{\alpha+t}) + 1$$

$$\implies \alpha + t + 1 - \dim_k(J_{\alpha+t}) \ge \alpha + t + 2 - \dim_k(J_{\alpha+t+1})$$

$$\implies \dim_k(S_{\alpha+t}) - \dim_k(J_{\alpha+t}) \ge \dim_k(S_{\alpha+t+1}) - \dim_k(J_{\alpha+t+1})$$

$$\implies H(S/J, \alpha + t) \ge H(S/J, \alpha + t + 1)$$

$$\implies \Delta H(\mathbb{X}, \alpha + t) \ge \Delta H(\mathbb{X}, \alpha + t + 1).$$

(4) Find all possible Hilbert functions for 9 distinct points in \mathbb{P}^2 . Pick one of the Hilbert functions \mathcal{H} and find a set $\mathbb{X} \subset \mathbb{P}^2$ of 9 distinct points in \mathbb{P}^2 such that $H(\mathbb{X}) = \mathcal{H}$. How do you know that the constructed set of points has the selected Hilbert function?

Solution: There are 8 possible Hilbert functions for 9 distinct points in \mathbb{P}^2 . The possible sequences are listed in the following table:

	$H(\mathbb{X})$	$\Delta H(\mathbb{X})$
Α	$(1, 2, 3, 4, 5, 6, 7, 8, 9, 9, \ldots)$	$\left[\left. (1,1,1,1,1,1,1,1,1,0,0,\ldots) \right. \right]$
B	$(1, 3, 4, 5, 6, 7, 8, 9, 9, \ldots)$	$(1, 2, 1, 1, 1, 1, 1, 1, 0, 0, \ldots)$
C	$(1, 3, 5, 6, 7, 8, 9, 9, \ldots)$	$(1, 2, 2, 1, 1, 1, 1, 0, 0, \ldots)$
D	$(1, 3, 5, 7, 8, 9, 9, \ldots)$	$(1, 2, 2, 2, 1, 1, 0, 0, \ldots)$
E	$(1, 3, 5, 7, 9, 9, \ldots)$	$(1, 2, 2, 2, 2, 0, 0, \ldots)$
F	$(1, 3, 6, 7, 8, 9, 9, \ldots)$	$(1, 2, 3, 1, 1, 1, 0, 0, \ldots)$
G	$(1, 3, 6, 8, 9, 9, \ldots)$	$(1, 2, 3, 2, 1, 0, 0, \ldots)$
H	$(1, 3, 6, 9, 9, \ldots)$	$(1, 2, 3, 3, 0, 0, \ldots)$

To argue that these are all the possible Hilbert functions, the following facts will be useful:

- $H(\mathbb{X})$ is a differentiable O-sequence with $H(\mathbb{X}, 1) \leq 3$
- $H(\mathbb{X}, d) \le 9$ for all $d \ge 0$
- $H(\mathbb{X}, d) = 9$ for $d \ge 8$
- $\sum_{t=0}^{8} \Delta H(\mathbb{X}, t) = 9$ (this follows immediately from the above facts)

We know that $1 \leq H(\mathbb{X}, 1) \leq 3$ and so $1 \leq \Delta H(\mathbb{X}, 1) \leq 2$. We consider these 2 cases. The details of each case is argued by carefully considering the above facts.

- (1) Suppose $\Delta H(\mathbb{X}, 1) = 1$. Since $\Delta H(\mathbb{X})$ is an O-sequence, $\Delta H(\mathbb{X}, t) \leq 1$ for $t \geq 2$. The only possible sequence for $H(\mathbb{X})$ is the sequence in Case A.
- (2) Suppose $\Delta H(\mathbb{X}, 1) = 2$. Then, since $\Delta H(\mathbb{X})$ is an O-sequence, $1 \leq \Delta H(\mathbb{X}, 2) \leq 3$. This leads to 3 possible situations.
 - (i) If $\Delta H(\mathbb{X}, 2) = 1$ then $\Delta H(\mathbb{X}, t) \leq 1$ for $t \geq 2$. This gives Case B.
 - (ii) If $\Delta H(\mathbb{X}, 2) = 2$ then $1 \leq \Delta H(\mathbb{X}, 3) \leq 2$. If $\Delta H(\mathbb{X}, 3) = 1$ then we must be in Case C. If $\Delta H(\mathbb{X}, 3) = 2$ then $1 \leq \Delta H(\mathbb{X}, 4) \leq 2$: if $\Delta H(\mathbb{X}, 4) = 1$ then we must be in Case D; if $\Delta H(\mathbb{X}, 4) = 2$ then we are in Case E.
 - (iii) If $\Delta H(\mathbb{X}, 2) = 3$ then $1 \leq \Delta H(\mathbb{X}, 3) \leq 4$. If $\Delta H(\mathbb{X}, 3) = 1$ then we must be in Case F. If $\Delta H(\mathbb{X}, 3) = 2$ then $\Delta H(\mathbb{X}, 4) = 1$ giving Case G. If $\Delta H(\mathbb{X}, 3) = 3$ then $\Delta H(\mathbb{X}, 4) = 0$ giving Case H. We can never have $\Delta H(\mathbb{X}, 3) = 4$ since $\sum_{t=0}^{8} \Delta H(\mathbb{X}, t) = 9$.

We now concentrate on $\mathcal{H} = (1, 3, 5, 7, 8, 9, 9, ...)$. Using the method of lifting monomial ideals with $t_{j,i} = i$ gives $H(\mathbb{X}) = \mathcal{H}$ where

$$\mathbb{X} = \{ [1:0:0], [1:1:0], [1:0:1], [1:2:0], [1:1:1], [1:3:0], [1:2:1], [1:4:0], [1:5:0] \}.$$

(5) Suppose that I is a homogeneous ideal in the ring $R = k[x_0, \ldots, x_n]$ where k is an algebraically closed field of characteristic 0. Suppose that $I_d \neq 0$ and that H(R/I) has maximal growth in degree d. Prove that I_d and I_{d+1} have a greatest common divisor of positive degree in the following two cases:

(a)
$$n = 1$$
 and $H(R/I, d) \ge 1$;

Proof. From our discussion on maximal growth of Hilbert functions it suffices to demonstrate that $PGCD(I_d)$ is positive. We have

$$PGCD(I_d) = \max\{j \mid f_{1,j}(d) \le H(R/I, d)\},\$$

where by definition

$$f_{1,j} = \binom{d+1}{1} - \binom{d-j+1}{1} = (d+1) - (d-j+1) = j.$$

Setting j = 1, we see that $1 = f_{1,1} \leq H(R/I, d)$. Hence $PGCD(I_d) > 0$ and we are done.

(b) n = 2 and $H(R/I, d) \ge d + 1$.

Proof. As in part (a), it suffices to demonstrate that $PGCD(I_d)$ is positive. We have $PGCD(I_d) = \max\{j \mid f_{2,j}(d) \le H(R/I, d)\},\$

where

$$f_{2,j} = \binom{d+2}{2} - \binom{d-j+2}{2}.$$

Setting j = 1, we see that

$$f_{2,1} = {d+2 \choose 2} - {d+1 \choose 2} = d+1 \le H(R/I, d).$$

We conclude that $PGCD(I_d) > 0$ which completes the proof.

4