Problem Set 2

Due: Thursday, March 25

- (1) Fix $\mathcal{H} := (1, 4, 6, 9, 10, 13, 13, ...)$ and let $S := k[x_1, x_2, x_3, x_4]$ where k is a field. Does there exist a homogeneous ideal $I \subset S$ such that $H(S/I) = \mathcal{H}$? Provide two reasons for your answer: one using an O-sequence approach and one using an order ideal of monomials approach.
- (2) For this exercise we use the same notation that was set up in our discussion of lifting monomial ideals. Let $f = \mathbf{x}^{\alpha} \in S = k[x_1, \ldots, x_n]$. Prove the following two facts:
 - (a) $\overline{f}(\boldsymbol{\beta}) = 0$ if and only if $\boldsymbol{\alpha} \leq \boldsymbol{\beta}$;
 - (b) $f(\overline{\gamma}) = 0$ for all γ with $\deg(\gamma) \leq \deg(\alpha)$ (except for α itself).
- (3) In this exercise we further explore Hilbert functions of distinct points in projective 2-space. Let $S = k[x_1, x_2]$, where k is an algebraically closed field of characteristic zero. Further, let $J \subset S$ be a homogeneous ideal such that $\sqrt{J} = (x_1, x_2)$. We set $\alpha(J)$ to be the least degree of a non-zero homogeneous polynomial in J.
 - (a) Set B = S/J. Prove that

$$H(B,t) = \begin{cases} t+1 & \text{for } t < \alpha(J) \\ \leq \alpha(J) & \text{for } t \geq \alpha(J). \end{cases}$$

(b) Let $V \subset S_t$ be a non-zero subspace of S_t . Denote by S_1V the subspace of S_{t+1} generated by $\{Lv \mid L \in S_1 \text{ and } v \in V\}$. Prove that

$$\dim_k(S_1V) \ge (\dim_k V) + 1.$$

(c) Let $\mathbb{X} = \{P_1, \ldots, P_t\}$ be a set of distinct points in \mathbb{P}^2 . We set $\alpha = \alpha(\mathbb{X})$ to be the least degree of a non-zero homogeneous polynomial in $I(\mathbb{X})$. Show that $\Delta H(\mathbb{X})$ has the form

$$\Delta H(\mathbb{X}) = \{1, 2, 3, \dots, \alpha - 1, \alpha, \Delta H(\mathbb{X}, \alpha), \Delta H(\mathbb{X}, \alpha + 1), \dots\}$$

where $\alpha \geq \Delta H(\mathbb{X}, \alpha) \geq \Delta H(\mathbb{X}, \alpha + 1) \geq \Delta H(\mathbb{X}, \alpha + 2) \geq \cdots$.

- (4) Find all possible Hilbert functions for 9 distinct points in \mathbb{P}^2 . Pick one of the Hilbert functions \mathcal{H} and find a set $\mathbb{X} \subset \mathbb{P}^2$ of 9 distinct points in \mathbb{P}^2 such that $H(\mathbb{X}) = \mathcal{H}$. How do you know that the constructed set of points has the selected Hilbert function?
- (5) Suppose that I is a homogeneous ideal in the ring $R = k[x_0, \ldots, x_n]$ where k is an algebraically closed field of characteristic 0. Suppose that $I_d \neq 0$ and that H(R/I) has maximal growth in degree d. Prove that I_d and I_{d+1} have a greatest common divisor of positive degree in the following two cases:
 - (a) n = 1 and $H(R/I, d) \ge 1$;
 - (b) n = 2 and $H(R/I, d) \ge d + 1$.