
Math 918 – The Power of Monomial Ideals

Problem Set 1 Solutions
Due: Tuesday, February 16

(1) Let S = k[x1, . . . , xn] where k is a field. Fix a monomial order >σ on Zn
≥0.

(a) Show that multideg(fg) = multideg(f)+ multideg(g) for non-zero polynomials f, g ∈ S.

Proof. Say multideg(f) = ααα0 and multideg(g) = βββ0. Then we can write

f = a0x
ααα0 +

∑
ααα∈I

aαααx
ααα

g = b0x
βββ0 +

∑
βββ∈I′

bβββx
βββ

where I and I ′ are some index sets and a0, b0, aααα, bβββ are in the field k. Since f and g
are non-zero, we know that a0 and b0 are non-zero. Furthermore, by the definition of
multidegree, ααα0 >σ ααα and βββ0 >σ βββ for all ααα ∈ I and for all βββ ∈ I ′. We have

fg = a0b0x
ααα0+βββ0 + a0

∑
βββ∈I′

bβββx
ααα0+βββ + b0

∑
ααα∈I

aαααx
ααα+βββ0 +

∑
ααα∈I,βββ∈I′

aαααbβββx
ααα+βββ.

Since >σ is a monomial order, relative ordering of terms is preserved when we multiply
monomials. In particular,

ααα0 + βββ0 >σ ααα0 + βββ >σ ααα + βββ

and

ααα0 + βββ0 >σ ααα + βββ0 >σ ααα + βββ

for all ααα ∈ I and for all βββ ∈ I ′. Therefore, since a0b0 6= 0, we must have that
multideg(fg) = multideg(f)+ multideg(g) �

(b) A special case of a weight order is constructed as follows. Fix u ∈ Zn
≥0. Then, for ααα,βββ

in Zn
≥0, define ααα >u,σ βββ if and only if

u ·ααα > u · βββ, or u ·ααα = u · βββ and ααα >σ βββ,

where · denotes the usual dot product of vectors. Verify that >u,σ is a monomial order.

Proof. We first show that >u,σ is a total ordering. Let ααα,βββ ∈ Zn
≥0. Assume that ααα 6= βββ.

Since Z≥0 is totally ordered with the usual definition of >, exactly one of the following
cases must be true:

(i) u ·ααα > u · βββ
(ii) u ·ααα < u · βββ
(iii) u ·ααα = u · βββ.

By definition of >u,σ, if case (i) holds then ααα >u,σ βββ. Similarly, if (ii) holds then
βββ >u,σ ααα. In the case (iii), since >σ is given to be a total order, exactly one of the
following cases holds: ααα >σ βββ and so ααα >u,σ βββ; βββ >σ ααα and so βββ >u,σ ααα; or ααα =σ βββ and
so ααα =u,σ βββ.

Therefore, exactly one of ααα >u,σ βββ or βββ >u,σ ααα or ααα =u,σ βββ holds. We conclude that
>u,σ is a total ordering.
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To demonstrate the second requirement for a monomial ordering, let ααα,βββ ∈ Zn
≥0 such

that ααα >u,σ βββ. Let γγγ ∈ Zn
≥0. If u ·ααα > u · βββ, then

u · (ααα + γγγ) = u ·ααα + u · γγγ > u · βββ + u · γγγ = u · (ααα + γγγ)

which shows that ααα + γγγ >u,σ βββ + γγγ. In the case that u ·ααα = u · βββ, then ααα >σ βββ. Note
that

u · (ααα + γγγ) = u ·ααα + u · γγγ = u · βββ + u · γγγ = u · (ααα + γγγ).

However, since >σ is a monomial ordering, we must have ααα + γγγ >σ βββ + γγγ. Thus again,
ααα + γγγ >u,σ βββ + γγγ.

Finally, to show that >u,σ is a well-ordering, we apply the Corollary to Dickson’s Lemma
and verify that ααα ≥u,σ 0 for all ααα ∈ Zn

≥0. Since ααα ∈ Zn
≥0, it is true that u ·ααα ≥ 0 = u ·0.

If u · ααα > 0 then we are done. If the dot product is zero, then we must have ααα ≥σ 0
since >σ is a well-ordering itself and so ααα ≥u,σ 0 yet again. �

(c) A particular example of a weight order is the elimination order which was introduced
by Bayer and Stillman. Fix an integer 1 ≤ i ≤ n and let u = (1, . . . , 1, 0, . . . , 0), where
there are i 1’s and n − i 0’s. Then the ith elimination order >i is the weight order
>u,grevlex. Prove that >i has the following property: if xααα is a monomial in which one
of x1, . . . , xi appears, then xααα >i xβββ for any monomial xβββ involving only xi+1, . . . , xn.
Does this property hold for the graded reverse lexicographic order?

Solution: We first prove the desired result and then compare the elimination order with
the graded reverse lexicographic order.

Proof. By the definitions of u,xααα and xβββ, it is clear that u ·ααα > 0 yet u ·βββ = 0. Thus,
by definition, xααα >i xβββ. �

This property does not hold for the graded reverse lexicographic order. For example,
let i = 1 and S = k[x1, x2] where x1 >grevlex x2. Then x3

2 >grevlex x1.

(2) Let I be a non-zero ideal in k[x1, . . . , xn]. Let G = {g1, . . . , gt} and F = {f1, . . . , fr} be
two minimal Gröbner bases for I with respect to some fixed monomial order. Show that
{LT (g1), . . . , LT (gt)} = {LT (f1), . . . , LT (fr)}.

Proof. Since both F and G are minimal Gröbner bases for I, we have that the leading
coefficient of each fi and gj must equal 1. Consider f1. Since G is a Gröbner basis for I
and f1 ∈ I, there is some gi such that LT (gi) divides LT (f1). Renumber if necessary so
that i = 1. Then, since g1 ∈ I and F is a Gröbner basis for I, there must exist some fj

such that LT (fj) divides LT (g1). We conclude that LT (fj) divides LT (f1). But, since F is
given to be minimal, LT (f1) is not in the ideal generated by the leading terms in F − {f1}.
We conclude that j = 1 and so LT (f1) = LT (g1). We repeat this argument starting with
f2. We again have that there exists some gl such that LT (gl) divides LT (f2). Since F is
a minimal Gröbner basis and LT (f1) = LT (g1), we know that l 6= 1. We may relabel, if
necessary, to assume that l = 2. Arguing as above yields LT (f2) = LT (g2). Continuing in
this fashion, we see that this procedure must stop at which point t = r and, after relabeling,
LT (fi) = LT (gi) for i = 1, . . . , t. �
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(3) Suppose that I = (g1, . . . , gt) is a non-zero ideal of k[x1, . . . , xn] and fix a monomial order
on Zn

≥0. Suppose that for all f in I we obtain a zero remainder upon dividing f by G =
{g1, . . . , gt} using the Division Algorithm. Prove that G is a Gröbner basis for I. (We
showed the converse of this statement in class.)

Solution: Below are two possible proofs for this exercise.

Proof. We argue by contradiction and suppose that G is not a Gröbner basis for I. Clearly,
(LT(g1), . . . , LT(gt)) ⊆ in(I). Thus, we must have in(I) 6⊆ (LT(g1), . . . , LT(gt)). Let f ∈ I
be a non-zero polynomial such that LT(f) 6∈ (LT(g1), . . . , LT(gt)). Apply the Division
Algorithm to divide f by G. Then, since LT(f) is not divisible by LT(gi) for any i, the
first step of the algorithm yields that LT(f) is added to the remainder column. This is a
contradiction to the hypothesis that when we divide f by G we obtain a zero remainder.
Therefore, G must be a Gröbner basis for I. �

Proof. We saw in class that G is a Gröbner basis if and only if for all pairs i 6= j, the
remainder on division of the S-polynomial S(gi, gj) is zero. By definition,

S(gi, gj) =
LCM(LM(gi), LM(gj))

LT(gi)
gi −

LCM(LM(gi), LM(gj))

LT(gj)
gj.

Since I = (g1, . . . , gt), we see that each S-polynomial S(gi, gj) is in I. Thus, by assumption,
when we divide S(gi, gj) by G we obtain a zero remainder. We conclude that G is a Gröbner
basis for I. �

(4) Consider the ideal I = (xy + z − xz, x2 − z) ⊂ k[x, y, z]. For what follows, use the graded
reverse lexicographic order with x > y > z. You are not permitted to use a computer algebra
system for this exercise. Be sure to show all of your work.
(a) Apply Buchberger’s Algorithm to find a Gröbner basis for I. Is the result a reduced

Gröbner basis for I?

Solution: Start by letting g1 = xy − xz + z, g2 = x2 − z and G = {g1, g2}. Then

S(g1, g2) =
x2y

xy
g1 −

x2y

x2
g2 = −x2z + xz + yz.

Applying the Division Algorithm to divide S(g1, g2) by G yields

S(g1, g2) = −zg2 + xz + yz − z2.

We let g3 = xz + yz− z2 (the remainder from dividing S(g1, g2) by G) and append this
to G. Thus, G = {g1, g2, g3}. We then calculate

S(g1, g3) =
xyz

xy
g1 −

xyz

xz
g3 = −y2z − xz2 + yz2 + z2.

Applying the Division Algorithm to divide S(g1, g3) by G yields

S(g1, g3) = −zg3 − y2z + 2yz2 − z3 + z2.

We let g4 = −y2z + 2yz2 − z3 + z2 (the remainder from dividing S(g1, g3) by G) and
append this to G. Thus, G = {g1, g2, g3, g4}. We show that G is a Gröbner basis for I
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by demonstrating that S(g1, g4), S(g2, g3), S(g2, g4) and S(g3, g4) have zero remainders
when divided by G. The end results are:

S(g1, g4) =
xy2z

xy
g1 −

xy2z

−y2z
g4 = xyz2 − xz3 + xz2 + yz2

= z2g1 + zg3

S(g2, g3) =
x2z

x2
g2 −

x2z

xz
g3 = −xyz + xz2 − z2

= −zg1

S(g2, g4) =
x2y2z

x2
g2 −

x2y2z

−y2z
g4 = 2x2yz2 − x2z3 + x2z2 − y2z2

= 2xz2g1 + (z3 + z2)g2 − 2z2g3 + zg4

S(g3, g4) =
xy2z

xz
g3 −

xy2z

−y2z
g4 = y3z + 2xyz2 − y2z2 − xz3 + xz2

= 2z2g1 + (z2 + z)g3 − (y + z)g4.

Note that G is not a reduced Gröbner basis for I. For example, the monomial −xz is
a term of g1 and LT (g3) = xz. So, −xz is in the ideal generated by the leading terms
in G− {g1}.

(b) Use your answer from part (a) to determine if f = xy3z − z3 + xy is in I.

Solution: Dividing f by the Gröbner basis G found in part (a) yields

f = (y2z + yz2 + z3 + 1)g1 + (z3 + 1)g3 + zg4 + (−yz4 + z5 − 3yz3 − 2z3 − yz + z2 − z).

Since the remainder r = −yz4 + z5 − 3yz3 − 2z3 − yz + z2 − z is non-zero, f is not in
the ideal I.

(5) Consider the affine variety V = V(x2+y2+z2−4, x2+2y2−5, xz−1) in C3. Use a computer
algebra system and Gröbner bases to find all the points of V .

Solution: Let I = (x2 + y2 + z2 − 4, x2 + 2y2 − 5, xz − 1) ⊂ C[x, y, z]. Using CoCoA and
working with lexicographic order with x >lex y >lex z, we find that a Gröbner basis for I is
G = {g1, g2, g3} where

g1 = y2 − z2 − 1

g2 = −x− 2z3 + 3z

g3 = −2z4 + 3z2 − 1

Thus V = V(g1, g2, g3). Note that g3 depends on z alone. Using the quadratic formula we
see that

g3 = 0 ⇐⇒ z = −1, 1,
1√
2
,
−1√

2
.

Setting z = 1, we see that

g2 = 0 ⇐⇒ x = 1

and

g1 = 0 ⇐⇒ y = −
√

2,
√

2.

Setting z = −1, we see that

g2 = 0 ⇐⇒ x = −1
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and
g1 = 0 ⇐⇒ y = −

√
2,
√

2.

Setting z =
1√
2
, we see that

g2 = 0 ⇐⇒ x =
√

2

and

g1 = 0 ⇐⇒ y =

√
3

2
,−
√

3

2
.

Setting z =
−1√

2
, we see that

g2 = 0 ⇐⇒ x = −
√

2

and

g1 = 0 ⇐⇒ y =

√
3

2
,−
√

3

2
.

Therefore,

V =

{
(1,±

√
2, 1), (−1,±

√
2,−1),

(
√

2,±
√

3

2
,

1√
2

)
,

(
−
√

2,±
√

3

2
,
−1√

2

)}
.


