Problem Set 1 Solutions

Due: Tuesday, February 16

(1) Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ where k is a field. Fix a monomial order $>_{\sigma}$ on $\mathbb{Z}_{\geq 0}^{n}$.
(a) Show that multideg $(f g)=\operatorname{multideg}(f)+\operatorname{multideg}(g)$ for non-zero polynomials $f, g \in S$.

Proof. Say multideg $(f)=\boldsymbol{\alpha}_{0}$ and multideg $(g)=\boldsymbol{\beta}_{0}$. Then we can write

$$
\begin{aligned}
& f=a_{0} \mathbf{x}^{\boldsymbol{\alpha}_{0}}+\sum_{\boldsymbol{\alpha} \in I} a_{\boldsymbol{\alpha}} \mathbf{x}^{\boldsymbol{\alpha}} \\
& g=b_{0} \mathbf{x}^{\boldsymbol{\beta}_{0}}+\sum_{\boldsymbol{\beta} \in I^{\prime}} b_{\boldsymbol{\beta}} \mathbf{x}^{\boldsymbol{\beta}}
\end{aligned}
$$

where I and I^{\prime} are some index sets and $a_{0}, b_{0}, a_{\boldsymbol{\alpha}}, b_{\boldsymbol{\beta}}$ are in the field k. Since f and g are non-zero, we know that a_{0} and b_{0} are non-zero. Furthermore, by the definition of multidegree, $\boldsymbol{\alpha}_{0}>_{\sigma} \boldsymbol{\alpha}$ and $\boldsymbol{\beta}_{0}>_{\sigma} \boldsymbol{\beta}$ for all $\boldsymbol{\alpha} \in I$ and for all $\boldsymbol{\beta} \in I^{\prime}$. We have

$$
f g=a_{0} b_{0} \mathbf{x}^{\boldsymbol{\alpha}_{0}+\boldsymbol{\beta}_{0}}+a_{0} \sum_{\boldsymbol{\beta} \in I^{\prime}} b_{\boldsymbol{\beta}} \mathrm{x}^{\boldsymbol{\alpha}_{0}+\boldsymbol{\beta}}+b_{0} \sum_{\boldsymbol{\alpha} \in I} a_{\boldsymbol{\alpha}} \mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}_{0}}+\sum_{\boldsymbol{\alpha} \in I, \boldsymbol{\beta} \in I^{\prime}} a_{\boldsymbol{\alpha}} b_{\boldsymbol{\beta}} \mathrm{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}} .
$$

Since $>_{\sigma}$ is a monomial order, relative ordering of terms is preserved when we multiply monomials. In particular,

$$
\boldsymbol{\alpha}_{0}+\boldsymbol{\beta}_{0}>_{\sigma} \boldsymbol{\alpha}_{0}+\boldsymbol{\beta}>_{\sigma} \boldsymbol{\alpha}+\boldsymbol{\beta}
$$

and

$$
\boldsymbol{\alpha}_{0}+\boldsymbol{\beta}_{0}>_{\sigma} \boldsymbol{\alpha}+\boldsymbol{\beta}_{0}>_{\sigma} \boldsymbol{\alpha}+\boldsymbol{\beta}
$$

for all $\alpha \in I$ and for all $\beta \in I^{\prime}$. Therefore, since $a_{0} b_{0} \neq 0$, we must have that $\operatorname{multideg}(f g)=\operatorname{multideg}(f)+\operatorname{multideg}(g)$
(b) A special case of a weight order is constructed as follows. Fix $\mathbf{u} \in \mathbb{Z}_{\geq 0}^{n}$. Then, for $\boldsymbol{\alpha}, \boldsymbol{\beta}$ in $\mathbb{Z}_{\geq 0}^{n}$, define $\boldsymbol{\alpha}>_{\mathbf{u}, \sigma} \boldsymbol{\beta}$ if and only if

$$
\mathbf{u} \cdot \boldsymbol{\alpha}>\mathbf{u} \cdot \boldsymbol{\beta}, \quad \text { or } \quad \mathbf{u} \cdot \boldsymbol{\alpha}=\mathbf{u} \cdot \boldsymbol{\beta} \quad \text { and } \quad \boldsymbol{\alpha}>_{\sigma} \boldsymbol{\beta},
$$

where • denotes the usual dot product of vectors. Verify that $>_{\mathbf{u}, \sigma}$ is a monomial order.
Proof. We first show that $>_{\mathbf{u}, \sigma}$ is a total ordering. Let $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{Z}_{\geq 0}^{n}$. Assume that $\boldsymbol{\alpha} \neq \boldsymbol{\beta}$. Since $\mathbb{Z}_{\geq 0}$ is totally ordered with the usual definition of $>$, exactly one of the following cases must be true:
(i) $\mathbf{u} \cdot \boldsymbol{\alpha}>\mathbf{u} \cdot \boldsymbol{\beta}$
(ii) $\mathbf{u} \cdot \boldsymbol{\alpha}<\mathbf{u} \cdot \boldsymbol{\beta}$
(iii) $\mathbf{u} \cdot \boldsymbol{\alpha}=\mathbf{u} \cdot \boldsymbol{\beta}$.

By definition of $>_{\mathbf{u}, \sigma}$, if case (i) holds then $\boldsymbol{\alpha}>_{\mathbf{u}, \sigma} \boldsymbol{\beta}$. Similarly, if (ii) holds then $\beta>_{\mathbf{u}, \sigma} \boldsymbol{\alpha}$. In the case (iii), since $>_{\sigma}$ is given to be a total order, exactly one of the following cases holds: $\boldsymbol{\alpha}>_{\sigma} \boldsymbol{\beta}$ and so $\boldsymbol{\alpha}>_{\mathbf{u}, \sigma} \boldsymbol{\beta} ; \boldsymbol{\beta}>_{\sigma} \boldsymbol{\alpha}$ and so $\boldsymbol{\beta}>_{\mathbf{u}, \sigma} \boldsymbol{\alpha}$; or $\boldsymbol{\alpha}={ }_{\sigma} \boldsymbol{\beta}$ and so $\boldsymbol{\alpha}={ }_{\mathbf{u}, \sigma} \boldsymbol{\beta}$.
Therefore, exactly one of $\boldsymbol{\alpha}>_{\mathbf{u}, \sigma} \boldsymbol{\beta}$ or $\boldsymbol{\beta}>_{\mathbf{u}, \sigma} \boldsymbol{\alpha}$ or $\boldsymbol{\alpha}=_{\mathbf{u}, \sigma} \boldsymbol{\beta}$ holds. We conclude that $>_{\mathbf{u}, \sigma}$ is a total ordering.

To demonstrate the second requirement for a monomial ordering, let $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{Z}_{\geq 0}^{n}$ such that $\boldsymbol{\alpha}>_{\mathbf{u}, \sigma} \boldsymbol{\beta}$. Let $\boldsymbol{\gamma} \in \mathbb{Z}_{\geq 0}^{n}$. If $\mathbf{u} \cdot \boldsymbol{\alpha}>\mathbf{u} \cdot \boldsymbol{\beta}$, then

$$
\mathbf{u} \cdot(\boldsymbol{\alpha}+\boldsymbol{\gamma})=\mathbf{u} \cdot \boldsymbol{\alpha}+\mathbf{u} \cdot \boldsymbol{\gamma}>\mathbf{u} \cdot \boldsymbol{\beta}+\mathbf{u} \cdot \boldsymbol{\gamma}=\mathbf{u} \cdot(\boldsymbol{\alpha}+\gamma)
$$

which shows that $\boldsymbol{\alpha}+\gamma>_{\mathbf{u}, \sigma} \boldsymbol{\beta}+\boldsymbol{\gamma}$. In the case that $\mathbf{u} \cdot \boldsymbol{\alpha}=\mathbf{u} \cdot \boldsymbol{\beta}$, then $\boldsymbol{\alpha}>_{\sigma} \boldsymbol{\beta}$. Note that

$$
\mathbf{u} \cdot(\boldsymbol{\alpha}+\gamma)=\mathbf{u} \cdot \boldsymbol{\alpha}+\mathbf{u} \cdot \gamma=\mathbf{u} \cdot \boldsymbol{\beta}+\mathbf{u} \cdot \gamma=\mathbf{u} \cdot(\boldsymbol{\alpha}+\gamma)
$$

However, since $>_{\sigma}$ is a monomial ordering, we must have $\alpha+\gamma>_{\sigma} \boldsymbol{\beta}+\boldsymbol{\gamma}$. Thus again, $\alpha+\gamma>_{\mathbf{u}, \sigma} \boldsymbol{\beta}+\boldsymbol{\gamma}$.
Finally, to show that $>_{\mathbf{u}, \sigma}$ is a well-ordering, we apply the Corollary to Dickson's Lemma and verify that $\boldsymbol{\alpha} \geq \mathbf{u}, \sigma \mathbf{0}$ for all $\boldsymbol{\alpha} \in \mathbb{Z}_{\geq 0}^{n}$. Since $\boldsymbol{\alpha} \in \mathbb{Z}_{\geq 0}^{n}$, it is true that $\mathbf{u} \cdot \boldsymbol{\alpha} \geq 0=\mathbf{u} \cdot \mathbf{0}$. If $\mathbf{u} \cdot \boldsymbol{\alpha}>0$ then we are done. If the dot product is zero, then we must have $\boldsymbol{\alpha} \geq_{\sigma} \mathbf{0}$ since $>_{\sigma}$ is a well-ordering itself and so $\boldsymbol{\alpha} \geq \mathbf{u}, \sigma \mathbf{0}$ yet again.
(c) A particular example of a weight order is the elimination order which was introduced by Bayer and Stillman. Fix an integer $1 \leq i \leq n$ and let $\mathbf{u}=(1, \ldots, 1,0, \ldots, 0)$, where there are i 1's and $n-i 0$'s. Then the i th elimination order $>_{i}$ is the weight order $>_{\mathbf{u}, \text { grevlex }}$. Prove that $>_{i}$ has the following property: if \mathbf{x}^{α} is a monomial in which one of x_{1}, \ldots, x_{i} appears, then $\mathbf{x}^{\boldsymbol{\alpha}}>_{i} \mathbf{x}^{\boldsymbol{\beta}}$ for any monomial $\mathbf{x}^{\boldsymbol{\beta}}$ involving only x_{i+1}, \ldots, x_{n}. Does this property hold for the graded reverse lexicographic order?

Solution: We first prove the desired result and then compare the elimination order with the graded reverse lexicographic order.

Proof. By the definitions of $\mathbf{u}, \mathbf{x}^{\boldsymbol{\alpha}}$ and $\mathbf{x}^{\boldsymbol{\beta}}$, it is clear that $\mathbf{u} \cdot \boldsymbol{\alpha}>0$ yet $\mathbf{u} \cdot \boldsymbol{\beta}=0$. Thus, by definition, $\mathrm{x}^{\alpha}>_{i} \mathrm{x}^{\boldsymbol{\beta}}$.

This property does not hold for the graded reverse lexicographic order. For example, let $i=1$ and $S=k\left[x_{1}, x_{2}\right]$ where $x_{1}>_{\text {grevlex }} x_{2}$. Then $x_{2}^{3}>_{\text {grevlex }} x_{1}$.
(2) Let I be a non-zero ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Let $G=\left\{g_{1}, \ldots, g_{t}\right\}$ and $F=\left\{f_{1}, \ldots, f_{r}\right\}$ be two minimal Gröbner bases for I with respect to some fixed monomial order. Show that $\left\{L T\left(g_{1}\right), \ldots, L T\left(g_{t}\right)\right\}=\left\{L T\left(f_{1}\right), \ldots, L T\left(f_{r}\right)\right\}$.

Proof. Since both F and G are minimal Gröbner bases for I, we have that the leading coefficient of each f_{i} and g_{j} must equal 1. Consider f_{1}. Since G is a Gröbner basis for I and $f_{1} \in I$, there is some g_{i} such that $L T\left(g_{i}\right)$ divides $L T\left(f_{1}\right)$. Renumber if necessary so that $i=1$. Then, since $g_{1} \in I$ and F is a Gröbner basis for I, there must exist some f_{j} such that $L T\left(f_{j}\right)$ divides $L T\left(g_{1}\right)$. We conclude that $L T\left(f_{j}\right)$ divides $L T\left(f_{1}\right)$. But, since F is given to be minimal, $L T\left(f_{1}\right)$ is not in the ideal generated by the leading terms in $F-\left\{f_{1}\right\}$. We conclude that $j=1$ and so $L T\left(f_{1}\right)=L T\left(g_{1}\right)$. We repeat this argument starting with f_{2}. We again have that there exists some g_{l} such that $L T\left(g_{l}\right)$ divides $L T\left(f_{2}\right)$. Since F is a minimal Gröbner basis and $L T\left(f_{1}\right)=L T\left(g_{1}\right)$, we know that $l \neq 1$. We may relabel, if necessary, to assume that $l=2$. Arguing as above yields $L T\left(f_{2}\right)=L T\left(g_{2}\right)$. Continuing in this fashion, we see that this procedure must stop at which point $t=r$ and, after relabeling, $L T\left(f_{i}\right)=L T\left(g_{i}\right)$ for $i=1, \ldots, t$.
(3) Suppose that $I=\left(g_{1}, \ldots, g_{t}\right)$ is a non-zero ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ and fix a monomial order on $\mathbb{Z}_{>0}^{n}$. Suppose that for all f in I we obtain a zero remainder upon dividing f by $G=$ $\left\{g_{1}, \ldots, g_{t}\right\}$ using the Division Algorithm. Prove that G is a Gröbner basis for I. (We showed the converse of this statement in class.)

Solution: Below are two possible proofs for this exercise.
Proof. We argue by contradiction and suppose that G is not a Gröbner basis for I. Clearly, $\left(\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{t}\right)\right) \subseteq \operatorname{in}(I)$. Thus, we must have $\operatorname{in}(I) \nsubseteq\left(\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{t}\right)\right)$. Let $f \in I$ be a non-zero polynomial such that $\operatorname{LT}(f) \notin\left(\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{t}\right)\right)$. Apply the Division Algorithm to divide f by G. Then, since $\operatorname{LT}(f)$ is not divisible by $\operatorname{LT}\left(g_{i}\right)$ for any i, the first step of the algorithm yields that $\mathrm{LT}(f)$ is added to the remainder column. This is a contradiction to the hypothesis that when we divide f by G we obtain a zero remainder. Therefore, G must be a Gröbner basis for I.

Proof. We saw in class that G is a Gröbner basis if and only if for all pairs $i \neq j$, the remainder on division of the S-polynomial $S\left(g_{i}, g_{j}\right)$ is zero. By definition,

$$
S\left(g_{i}, g_{j}\right)=\frac{\operatorname{LCM}\left(\operatorname{LM}\left(g_{i}\right), \operatorname{LM}\left(g_{j}\right)\right)}{\operatorname{LT}\left(g_{i}\right)} g_{i}-\frac{\operatorname{LCM}\left(\operatorname{LM}\left(g_{i}\right), \operatorname{LM}\left(g_{j}\right)\right)}{\operatorname{LT}\left(g_{j}\right)} g_{j} .
$$

Since $I=\left(g_{1}, \ldots, g_{t}\right)$, we see that each S-polynomial $S\left(g_{i}, g_{j}\right)$ is in I. Thus, by assumption, when we divide $S\left(g_{i}, g_{j}\right)$ by G we obtain a zero remainder. We conclude that G is a Gröbner basis for I.
(4) Consider the ideal $I=\left(x y+z-x z, x^{2}-z\right) \subset k[x, y, z]$. For what follows, use the graded reverse lexicographic order with $x>y>z$. You are not permitted to use a computer algebra system for this exercise. Be sure to show all of your work.
(a) Apply Buchberger's Algorithm to find a Gröbner basis for I. Is the result a reduced Gröbner basis for I ?

Solution: Start by letting $g_{1}=x y-x z+z, g_{2}=x^{2}-z$ and $G=\left\{g_{1}, g_{2}\right\}$. Then

$$
S\left(g_{1}, g_{2}\right)=\frac{x^{2} y}{x y} g_{1}-\frac{x^{2} y}{x^{2}} g_{2}=-x^{2} z+x z+y z
$$

Applying the Division Algorithm to divide $S\left(g_{1}, g_{2}\right)$ by G yields

$$
S\left(g_{1}, g_{2}\right)=-z g_{2}+x z+y z-z^{2}
$$

We let $g_{3}=x z+y z-z^{2}$ (the remainder from dividing $S\left(g_{1}, g_{2}\right)$ by G) and append this to G. Thus, $G=\left\{g_{1}, g_{2}, g_{3}\right\}$. We then calculate

$$
S\left(g_{1}, g_{3}\right)=\frac{x y z}{x y} g_{1}-\frac{x y z}{x z} g_{3}=-y^{2} z-x z^{2}+y z^{2}+z^{2} .
$$

Applying the Division Algorithm to divide $S\left(g_{1}, g_{3}\right)$ by G yields

$$
S\left(g_{1}, g_{3}\right)=-z g_{3}-y^{2} z+2 y z^{2}-z^{3}+z^{2}
$$

We let $g_{4}=-y^{2} z+2 y z^{2}-z^{3}+z^{2}$ (the remainder from dividing $S\left(g_{1}, g_{3}\right)$ by G) and append this to G. Thus, $G=\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$. We show that G is a Gröbner basis for I
by demonstrating that $S\left(g_{1}, g_{4}\right), S\left(g_{2}, g_{3}\right), S\left(g_{2}, g_{4}\right)$ and $S\left(g_{3}, g_{4}\right)$ have zero remainders when divided by G. The end results are:

$$
\begin{aligned}
S\left(g_{1}, g_{4}\right) & =\frac{x y^{2} z}{x y} g_{1}-\frac{x y^{2} z}{-y^{2} z} g_{4}=x y z^{2}-x z^{3}+x z^{2}+y z^{2} \\
& =z^{2} g_{1}+z g_{3} \\
S\left(g_{2}, g_{3}\right) & =\frac{x^{2} z}{x^{2}} g_{2}-\frac{x^{2} z}{x z} g_{3}=-x y z+x z^{2}-z^{2} \\
& =-z g_{1} \\
S\left(g_{2}, g_{4}\right) & =\frac{x^{2} y^{2} z}{x^{2}} g_{2}-\frac{x^{2} y^{2} z}{-y^{2} z} g_{4}=2 x^{2} y z^{2}-x^{2} z^{3}+x^{2} z^{2}-y^{2} z^{2} \\
& =2 x z^{2} g_{1}+\left(z^{3}+z^{2}\right) g_{2}-2 z^{2} g_{3}+z g_{4} \\
S\left(g_{3}, g_{4}\right) & =\frac{x y^{2} z}{x z} g_{3}-\frac{x y^{2} z}{-y^{2} z} g_{4}=y^{3} z+2 x y z^{2}-y^{2} z^{2}-x z^{3}+x z^{2} \\
& =2 z^{2} g_{1}+\left(z^{2}+z\right) g_{3}-(y+z) g_{4} .
\end{aligned}
$$

Note that G is not a reduced Gröbner basis for I. For example, the monomial $-x z$ is a term of g_{1} and $L T\left(g_{3}\right)=x z$. So, $-x z$ is in the ideal generated by the leading terms in $G-\left\{g_{1}\right\}$.
(b) Use your answer from part (a) to determine if $f=x y^{3} z-z^{3}+x y$ is in I.

Solution: Dividing f by the Gröbner basis G found in part (a) yields

$$
f=\left(y^{2} z+y z^{2}+z^{3}+1\right) g_{1}+\left(z^{3}+1\right) g_{3}+z g_{4}+\left(-y z^{4}+z^{5}-3 y z^{3}-2 z^{3}-y z+z^{2}-z\right) .
$$

Since the remainder $r=-y z^{4}+z^{5}-3 y z^{3}-2 z^{3}-y z+z^{2}-z$ is non-zero, f is not in the ideal I.
(5) Consider the affine variety $V=\mathbf{V}\left(x^{2}+y^{2}+z^{2}-4, x^{2}+2 y^{2}-5, x z-1\right)$ in \mathbb{C}^{3}. Use a computer algebra system and Gröbner bases to find all the points of V.
Solution: Let $I=\left(x^{2}+y^{2}+z^{2}-4, x^{2}+2 y^{2}-5, x z-1\right) \subset \mathbb{C}[x, y, z]$. Using CoCoA and working with lexicographic order with $x>_{\text {lex }} y>_{l e x} z$, we find that a Gröbner basis for I is $G=\left\{g_{1}, g_{2}, g_{3}\right\}$ where

$$
\begin{aligned}
& g_{1}=y^{2}-z^{2}-1 \\
& g_{2}=-x-2 z^{3}+3 z \\
& g_{3}=-2 z^{4}+3 z^{2}-1
\end{aligned}
$$

Thus $V=\mathbf{V}\left(g_{1}, g_{2}, g_{3}\right)$. Note that g_{3} depends on z alone. Using the quadratic formula we see that

$$
g_{3}=0 \Longleftrightarrow z=-1,1, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} .
$$

Setting $z=1$, we see that

$$
g_{2}=0 \Longleftrightarrow x=1
$$

and

$$
g_{1}=0 \Longleftrightarrow y=-\sqrt{2}, \sqrt{2} .
$$

Setting $z=-1$, we see that

$$
g_{2}=0 \Longleftrightarrow x=-1
$$

and

$$
g_{1}=0 \Longleftrightarrow y=-\sqrt{2}, \sqrt{2} .
$$

Setting $z=\frac{1}{\sqrt{2}}$, we see that

$$
g_{2}=0 \Longleftrightarrow x=\sqrt{2}
$$

and

$$
g_{1}=0 \Longleftrightarrow y=\sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}} .
$$

Setting $z=\frac{-1}{\sqrt{2}}$, we see that

$$
g_{2}=0 \Longleftrightarrow x=-\sqrt{2}
$$

and

$$
g_{1}=0 \Longleftrightarrow y=\sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}} .
$$

Therefore,

$$
V=\left\{(1, \pm \sqrt{2}, 1),(-1, \pm \sqrt{2},-1),\left(\sqrt{2}, \pm \sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right),\left(-\sqrt{2}, \pm \sqrt{\frac{3}{2}}, \frac{-1}{\sqrt{2}}\right)\right\}
$$

