Problem Set 1

Due: Tuesday, February 16

(1) Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ where k is a field. Fix a monomial order $>_{\sigma}$ on $\mathbb{Z}_{\geq 0}^{n}$.
(a) Show that multideg $(f g)=\operatorname{multideg}(f)+\operatorname{multideg}(g)$ for non-zero polynomials $f, g \in S$.
(b) A special case of a weight order is constructed as follows. Fix $\mathbf{u} \in \mathbb{Z}_{\geq 0}^{n}$. Then, for $\boldsymbol{\alpha}, \boldsymbol{\beta}$ in $\mathbb{Z}_{\geq 0}^{n}$, define $\boldsymbol{\alpha}>_{\mathbf{u}, \sigma} \boldsymbol{\beta}$ if and only if

$$
\mathbf{u} \cdot \boldsymbol{\alpha}>\mathbf{u} \cdot \boldsymbol{\beta}, \quad \text { or } \quad \mathbf{u} \cdot \boldsymbol{\alpha}=\mathbf{u} \cdot \boldsymbol{\beta} \quad \text { and } \quad \boldsymbol{\alpha}>_{\sigma} \boldsymbol{\beta},
$$

where • denotes the usual dot product of vectors. Verify that $>_{\mathbf{u}, \sigma}$ is a monomial order.
(c) A particular example of a weight order is the elimination order which was introduced by Bayer and Stillman. Fix an integer $1 \leq i \leq n$ and let $\mathbf{u}=(1, \ldots, 1,0, \ldots, 0)$, where there are i 's and $n-i 0$'s. Then the i th elimination order $>_{i}$ is the weight order $>_{\mathbf{u}, \text { grevlex }}$. Prove that $>_{i}$ has the following property: if \mathbf{x}^{α} is a monomial in which one of x_{1}, \ldots, x_{i} appears, then $\mathbf{x}^{\boldsymbol{\alpha}}>_{i} \mathbf{x}^{\boldsymbol{\beta}}$ for any monomial $\mathbf{x}^{\boldsymbol{\beta}}$ involving only x_{i+1}, \ldots, x_{n}. Does this property hold for the graded reverse lexicographic order?
(2) Let I be a non-zero ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Let $G=\left\{g_{1}, \ldots, g_{t}\right\}$ and $F=\left\{f_{1}, \ldots, f_{r}\right\}$ be two minimal Gröbner bases for I with respect to some fixed monomial order. Show that $\left\{L T\left(g_{1}\right), \ldots, L T\left(g_{t}\right)\right\}=\left\{L T\left(f_{1}\right), \ldots, L T\left(f_{r}\right)\right\}$.
(3) Suppose that $I=\left(g_{1}, \ldots, g_{t}\right)$ is a non-zero ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ and fix a monomial order on $\mathbb{Z}_{\geq 0}^{n}$. Suppose that for all f in I we obtain a zero remainder upon dividing f by $G=$ $\left\{g_{1}, \ldots, g_{t}\right\}$ using the Division Algorithm. Prove that G is a Gröbner basis for I. (We showed the converse of this statement in class.)
(4) Consider the ideal $I=\left(x y+z-x z, x^{2}-z\right) \subset k[x, y, z]$. For what follows, use the graded reverse lexicographic order with $x>y>z$. You are not permitted to use a computer algebra system for this exercise. Be sure to show all of your work.
(a) Apply Buchberger's Algorithm to find a Gröbner basis for I. Is the result a reduced Gröbner basis for I ?
(b) Use your answer from part (a) to determine if $f=x y^{3} z-z^{3}+x y$ is in I.
(5) Consider the affine variety $V=\mathbf{V}\left(x^{2}+y^{2}+z^{2}-4, x^{2}+2 y^{2}-5, x z-1\right)$ in \mathbb{C}^{3}. Use a computer algebra system and Gröbner bases to find all the points of V.

