Fun with Bases
 Math 314-002 Application Mini-Project \#4

Solutions

1. Let n be any positive integer. Show that $\left\{1, \cos (t), \cos ^{2}(t), \cos ^{3}(t), \ldots, \cos ^{n}(t)\right\}$ is a linearly independent subset of \mathcal{F} (the vector space of all functions). Here is how you can do this: Learn about Vandermonde determinants. (These are discussed briefly on page 288 of your text, or you can learn about them from a variety of other sources.) Now consider a hypothetical dependence relation of the form

$$
c_{1}+c_{2} \cos (t)+c_{3} \cos ^{2}(t)+\cdots+c_{n+1} \cos ^{n}(t)=0
$$

Pick $n+1$ values of t, say $t=t_{1}, t_{2}, \ldots, t_{n+1}$, such that $\cos \left(t_{1}\right), \ldots, \cos \left(t_{n+1}\right)$ are distinct numbers. (We'll take it as obvious that such t_{i} 's exist.) This gives $n+1$ equations involving the constants c_{1}, \ldots, c_{n+1}. Now use what you learned about Vandermonde determinants to conclude that we must have $c_{1}=c_{2}=\cdots=c_{n+1}=0$.

Solution: Suppose we have scalars $c_{1}, c_{2}, \ldots, c_{n+1}$ such that

$$
c_{1}(1)+c_{2} \cos (t)+c_{3} \cos ^{2}(t)+\cdots+c_{n+1} \cos ^{n}(t)=0
$$

where 0 denotes the zero function f defined by $f(t)=0$ for all t.
As suggested, we pick $n+1$ values of t, say $t=t_{1}, t_{2}, \ldots, t_{n+1}$ such that $\cos \left(t_{1}\right), \cos \left(t_{2}\right), \ldots, \cos \left(t_{n+1}\right)$ are distinct numbers. Plugging these values of t into the above equation gives us the following $n+1$ equations in the variables $c_{1}, c_{2}, \ldots, c_{n+1}$:

$$
\begin{aligned}
0 & =(1) c_{1}+\cos \left(t_{1}\right)\left(c_{2}\right)+\cos ^{2}\left(t_{1}\right)\left(c_{3}\right)+\cdots+\cos ^{n}\left(t_{1}\right)\left(c_{n+1}\right) \\
0 & =(1) c_{1}+\cos \left(t_{2}\right)\left(c_{2}\right)+\cos ^{2}\left(t_{2}\right)\left(c_{3}\right)+\cdots+\cos ^{n}\left(t_{2}\right)\left(c_{n+1}\right) \\
\cdots & =\cdots \cdots \cdots \\
0 & =(1) c_{1}+\cos \left(t_{n}\right)\left(c_{2}\right)+\cos ^{2}\left(t_{n}\right)\left(c_{3}\right)+\cdots+\cos ^{n}\left(t_{n}\right)\left(c_{n+1}\right) \\
0 & =(1) c_{1}+\cos \left(t_{n+1}\right)\left(c_{2}\right)+\cos ^{2}\left(t_{n+1}\right)\left(c_{3}\right)+\cdots+\cos ^{n}\left(t_{n+1}\right)\left(c_{n+1}\right)
\end{aligned}
$$

We can express this system of linear equations in the matrix equation $A \mathbf{c}=\mathbf{0}$ where

$$
A=\left[\begin{array}{ccccc}
1 & \cos \left(t_{1}\right) & \cos ^{2}\left(t_{1}\right) & \cdots & \cos ^{n}\left(t_{1}\right) \\
1 & \cos \left(t_{2}\right) & \cos ^{2}\left(t_{2}\right) & \cdots & \cos ^{n}\left(t_{2}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \cos \left(t_{n}\right) & \cos ^{2}\left(t_{n}\right) & \cdots & \cos ^{n}\left(t_{n}\right) \\
1 & \cos \left(t_{n+1}\right) & \cos ^{2}\left(t_{n+1}\right) & \cdots & \cos ^{n}\left(t_{n+1}\right)
\end{array}\right]
$$

and

$$
\mathbf{c}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n} \\
c_{n+1}
\end{array}\right]
$$

Using Vandermonde determinants, we have that

$$
\begin{aligned}
\operatorname{det}(A)= & \prod_{1 \leq i<j \leq n+1}\left(\cos \left(t_{j}\right)-\cos \left(t_{i}\right)\right) \\
= & \left(\cos \left(t_{2}\right)-\cos \left(t_{1}\right)\right) \cdots\left(\cos \left(t_{n+1}\right)-\cos \left(t_{1}\right)\right)\left(\cos \left(t_{3}\right)-\cos \left(t_{2}\right)\right) \cdots\left(\cos \left(t_{n+1}\right)-\cos \left(t_{2}\right)\right) \cdots \\
& \cdots\left(\cos \left(t_{n+1}\right)-\cos \left(t_{n}\right)\right)
\end{aligned}
$$

Since the numbers $\cos \left(t_{1}\right), \cos \left(t_{2}\right), \ldots, \cos \left(t_{n+1}\right)$ are distinct, the number $\cos \left(t_{j}\right)-\cos \left(t_{i}\right) \neq 0$ for all $1 \leq i<j \leq n+1$. Thus, $\operatorname{det}(A) \neq 0$. We conclude that the $(n+1) \times(n+1)$ matrix A is invertible. This means that the system $A \mathbf{c}=\mathbf{0}$ has the unique solution

$$
\mathbf{c}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{n} \\
c_{n+1}
\end{array}\right]=A^{-1} \mathbf{0}=\mathbf{0}
$$

Since $\mathbf{c}=\mathbf{0}$, we must have that

$$
c_{1}=c_{2}=c_{3}=\cdots=c_{n}=c_{n+1}=0 .
$$

Therefore,

$$
B=\left\{1, \cos (t), \cos ^{2}(t), \ldots, \cos ^{n}(t)\right\}
$$

is a linearly independent subset of \mathcal{F}.
2. Let V be the subspace of \mathcal{F} spanned by $B=\left\{1, \cos (t), \cos ^{2}(t), \cos ^{3}(t), \cos ^{4}(t), \cos ^{5}(t)\right\}$. Since B is linearly independent (as you showed in (1)), we have that B is a basis of V. Using the trigonometric identities

$$
\begin{aligned}
& \cos (2 t)=-1+2 \cos ^{2}(t) \\
& \cos (3 t)=-3 \cos (t)+4 \cos ^{3}(t) \\
& \cos (4 t)=1-8 \cos ^{2}(t)+8 \cos ^{4}(t) \\
& \cos (5 t)=5 \cos (t)-20 \cos ^{3}(t)+16 \cos ^{5}(t)
\end{aligned}
$$

write the B-coordinate vector for each of the functions $1, \cos (t), \cos (2 t), \cos (3 t), \cos (4 t), \cos (5 t)$.
Solution: Using the trig identities, we express the functions $1, \cos (t), \cos (2 t), \cos (3 t), \cos (4 t), \cos (5 t)$ as linear combinations of the functions in B :

$$
\begin{aligned}
1 & =1(1)+0 \cos (t)+0 \cos ^{2}(t)+0 \cos ^{3}(t)+0 \cos ^{4}(t)+0 \cos ^{5}(t) \\
\cos (t) & =0(1)+1 \cos (t)+0 \cos ^{2}(t)+0 \cos ^{3}(t)+0 \cos ^{4}(t)+0 \cos ^{5}(t) \\
\cos (2 t) & =-1(1)+0 \cos (t)+2 \cos ^{2}(t)+0 \cos ^{3}(t)+0 \cos ^{4}(t)+0 \cos ^{5}(t) \\
\cos (3 t) & =0(1)-3 \cos (t)+0 \cos ^{2}(t)+4 \cos ^{3}(t)+0 \cos ^{4}(t)+0 \cos ^{5}(t) \\
\cos (4 t) & =1(1)+0 \cos (t)-8 \cos ^{2}(t)+0 \cos ^{3}(t)+8 \cos ^{4}(t)+0 \cos ^{5}(t) \\
\cos (5 t) & =0(1)+5 \cos (t)+0 \cos ^{2}(t)-20 \cos ^{3}(t)+0 \cos ^{4}(t)+16 \cos ^{5}(t)
\end{aligned}
$$

Thus, by definition, we have the following B-coordinate vectors:

$$
\begin{aligned}
& {[1]_{B}=} {\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],[\cos (t)]_{B}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],[\cos (2 t)]_{B}=\left[\begin{array}{r}
-1 \\
0 \\
2 \\
0 \\
0 \\
0
\end{array}\right], } \\
& {[\cos (3 t)]_{B}=\left[\begin{array}{r}
0 \\
-3 \\
4 \\
0 \\
0
\end{array}\right],[\cos (4 t)]_{B}=\left[\begin{array}{r}
1 \\
0 \\
-8 \\
0 \\
8 \\
0
\end{array}\right],[\cos (5 t)]_{B}=\left[\begin{array}{r}
0 \\
5 \\
0 \\
-20 \\
0 \\
16
\end{array}\right] . }
\end{aligned}
$$

3. Use the calculations from the previous part to show that $C=\{1, \cos (t), \cos (2 t), \cos (3 t), \cos (4 t), \cos (5 t)\}$ is another basis of V.

Solution: Let A be the 6×6 matrix whose columns are the coordinate vectors we found in Task 2 . That is, let

$$
A=\left[\begin{array}{rrrrrr}
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & -3 & 0 & 5 \\
0 & 0 & 2 & 0 & -8 & 0 \\
0 & 0 & 0 & 4 & 0 & -20 \\
0 & 0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 16
\end{array}\right]
$$

We see that A is already in row-echelon form. Moreover, since there is a pivot (i.e., a leading entry) in each column of A, we know that the column vectors of A form a linearly independent set in \mathbb{R}^{6}. Therefore, by Theorem 6.7, the set $C=\{1, \cos (t), \cos (2 t), \cos (3 t), \cos (4 t), \cos (5 t)\}$ is a linearly independent set of functions.
Knowing that B is a basis for V, we see that $\operatorname{dim}(V)=6$. Since the functions in C are linear combinations of the functions in B, we know that the functions in C are also in V. Therefore, since C has $6=\operatorname{dim}(V)$ linearly independent functions in V, C must also be a basis for V by Theorem 6.10 (c).
4. Use the calculations from (2) to find the change of basis matrix $P_{B \leftarrow C}$ and then use a calculator to find $P_{C \leftarrow B}$.

Solution: By definition,

$$
\begin{aligned}
P_{B \leftarrow C} & =\left[\begin{array}{lrrrrl}
{[1]_{B}} & {[\cos (t)]_{B}} & {[\cos (2 t)]_{B}} & {[\cos (3 t)]_{B}} & {[\cos (4 t)]_{B}} & \left.[\cos (5 t)]_{B}\right]
\end{array}\right. \\
& =\left[\begin{array}{rrrrrr}
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & -3 & 0 & 5 \\
0 & 0 & 2 & 0 & -8 & 0 \\
0 & 0 & 0 & 4 & 0 & -20 \\
0 & 0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 16
\end{array}\right] .
\end{aligned}
$$

By Theorem 6.12 (c), $P_{C \leftarrow B}=\left(P_{B \leftarrow C}\right)^{-1}$. Using a CAS we find

$$
P_{C \leftarrow B}=\left(P_{B \leftarrow C}\right)^{-1}=\left[\begin{array}{cccccc}
1 & 0 & \frac{1}{2} & 0 & \frac{3}{8} & 0 \\
0 & 1 & 0 & \frac{3}{4} & 0 & \frac{5}{8} \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{4} & 0 & \frac{5}{16} \\
0 & 0 & 0 & 0 & \frac{1}{8} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{16}
\end{array}\right] .
$$

5. Use $P_{C \leftarrow B}$ to calculate

$$
\int\left(a_{0}+a_{1} \cos (t)+a_{2} \cos ^{2}(t)+a_{3} \cos ^{3}(t)+a_{4} \cos ^{4}(t)+a_{5} \cos ^{5}(t)\right) d t
$$

where a_{0}, \ldots, a_{5} are arbitrary constants, by first transforming the integrand into a linear combination of the functions in C.

Solution: Let $f(t)=a_{0}+a_{1} \cos (t)+a_{2} \cos ^{2}(t)+a_{3} \cos ^{3}(t)+a_{4} \cos ^{4}(t)+a_{5} \cos ^{5}(t)$. Then

$$
[f(t)]_{B}=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]
$$

By Theorem 6.12 (a),

$$
\begin{aligned}
{[f(t)]_{C} } & =P_{C \leftarrow B}[f(t)]_{B} \\
& =\left[\begin{array}{cccccc}
1 & 0 & \frac{1}{2} & 0 & \frac{3}{8} & 0 \\
0 & 1 & 0 & \frac{3}{4} & 0 & \frac{5}{8} \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{4} & 0 & \frac{5}{16} \\
0 & 0 & 0 & 0 & \frac{1}{8} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{16}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
a_{0}+\frac{1}{2} a_{2}+\frac{3}{8} a_{4} \\
a_{1}+\frac{3}{4} a_{3}+\frac{5}{8} a_{5} \\
\frac{1}{2} a_{2}+\frac{1}{2} a_{4} \\
\frac{1}{4} a_{3}+\frac{5}{16} a_{5} \\
\frac{1}{8} a_{4} \\
\frac{1}{16} a_{5}
\end{array}\right]
\end{aligned}
$$

This means that

$$
\begin{aligned}
f(t)= & \left(a_{0}+\frac{1}{2} a_{2}+\frac{3}{8} a_{4}\right)(1)+\left(a_{1}+\frac{3}{4} a_{3}+\frac{5}{8} a_{5}\right) \cos (t)+\left(\frac{1}{2} a_{2}+\frac{1}{2} a_{4}\right) \cos (2 t) \\
& +\left(\frac{1}{4} a_{3}+\frac{5}{16} a_{5}\right) \cos (3 t)+\left(\frac{1}{8} a_{4}\right) \cos (4 t)+\left(\frac{1}{16} a_{5}\right) \cos (5 t) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int f(t) d t= & \left(a_{0}+\frac{1}{2} a_{2}+\frac{3}{8} a_{4}\right)(t)+\left(a_{1}+\frac{3}{4} a_{3}+\frac{5}{8} a_{5}\right) \sin (t)+\left(\frac{1}{2} a_{2}+\frac{1}{2} a_{4}\right) \frac{1}{2} \sin (2 t) \\
& +\left(\frac{1}{4} a_{3}+\frac{5}{16} a_{5}\right) \frac{1}{3} \sin (3 t)+\left(\frac{1}{8} a_{4}\right) \frac{1}{4} \sin (4 t)+\left(\frac{1}{16} a_{5}\right) \frac{1}{5} \sin (5 t)+C
\end{aligned}
$$

where C is the constant of integration.

