Rounding Issues - Clarification
 Math 314-006
 Applied Mini-Project \#1

Some explanation may be helpful for \#2 (a) on page 86. Obtaining the "solution" $x=-1.00, y=1.01$ depends on how one rounds to three significant digits while carrying out the involved calculations.

To solve the system

$$
\begin{aligned}
0.400 x+99.6 y & =100 \\
75.3 x-45.3 y & =30.0
\end{aligned}
$$

we row-reduce the associated augmented matrix:

$$
\left[\begin{array}{rr|r}
0.400 & 99.6 & 100 \\
75.3 & -45.3 & 30.0
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}-(75.3) /(0.400) R_{1}}\left[\begin{array}{rr|r}
0.400 & 99.6 & 100 \\
0 & -18700 & -18800
\end{array}\right] .
$$

Observe that, rounding to three significant digits,

$$
\frac{75.3}{0.400}(99.6)=18749.7 \approx 18700
$$

and

$$
\frac{75.3}{0.400}(100)=18825 \approx 18800
$$

So, the numbers -18700 and -18800 in the second row of the reduced matrix are a result of the following rounding (to three significant digits):

$$
-45.3-\frac{75.3}{0.400}(99.6) \approx-45.3-18700=-18745.3 \approx-18700
$$

and

$$
30.0-\frac{75.3}{0.400}(100) \approx 30.0-18800=-18770 \approx-18800
$$

Therefore,

$$
-18700 y=-18800 \Longrightarrow y=1.00534759358 \approx 1.01
$$

We now use $y=1.01$ to find x. We have

$$
0.400 x+(99.6)(1.01)=100
$$

So,

$$
x=\frac{100}{0.400}-\frac{(99.6)(1.01)}{0.400}=250-251.49 \approx 250-251=-1.00
$$

(here we rounded 251.49 to three significant digits).

