Problem Set 6 Due: 11:30 a.m. on Tuesday, April 9

Instructions: All students except for the presenter are to submit solutions to **two** of the exercises below. Be sure to adhere to the expectations outlined on the sheet *Guidelines for Problem Sets*. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises:

- 1. Let $\mathcal{H} = (\mathcal{E}_1, \ldots, \mathcal{E}_d)$ be a hypergraph on $V(\mathcal{H}) = \{x_1, \ldots, x_n\}$ such that $|\mathcal{E}_j| = 2$, for all $j = 1, \ldots, d$ (that is, \mathcal{H} is a simple graph).
 - (a) Using the notion of the incidence matrix of \mathcal{H} , give conditions that \mathcal{H} must satisfy in order for its dual \mathcal{H}^* to also be a simple graph.
 - (b) Suppose $\mathcal{H} = (\mathcal{E}_1, \dots, \mathcal{E}_8)$ is a hypergraph (with $|\mathcal{E}_j| = 2$, for all $j = 1, \dots, 8$) on $V(\mathcal{H}) = \{x_1, \dots, x_8\}$ whose incidence matrix is given by

	Γ1	0	0	0	0	0	0	1]	
A =	0	1	0	0	0	0	1	0	
	0	0	1	0	0	1	0	0	
	0	0	1	0	1	0	0	0	
	0	0	0	1	0	0	1	0	•
	0	0	0	0	1	1	0	0	
	1	0	0	1	0	0	0	0	
	0	1	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0	0	0	0	1	

Use part (a) to determine whether \mathcal{H} is a simple graph or not. Is \mathcal{H}^* a simple graph? Justify your answer. Do not draw \mathcal{H} .

- 2. Let $\mathcal{H} = (\mathcal{E}_1, \ldots, \mathcal{E}_d)$ be a hypergraph on $V(\mathcal{H}) = \{x_1, \ldots, x_n\}$. Prove that the dual of a subhypergraph of \mathcal{H} is a partial hypergraph of the dual hypergraph \mathcal{H}^* .
- 3. Let $\mathcal{H} = (\mathcal{E}_1, \dots, \mathcal{E}_d)$ be a simple hypergraph on $V(\mathcal{H}) = \{x_1, \dots, x_n\}$ satisfying the following two conditions:
 - (i) $\mathcal{E}_j \cap \mathcal{E}_k \neq \emptyset$ for all $j \neq k$;
 - (ii) $\mathcal{E}_j \cup \mathcal{E}_k \neq V(\mathcal{H})$ for all $j \neq k$.

Prove that $\mathcal{H}' = (\mathcal{E}_1, \ldots, \mathcal{E}_d, V(\mathcal{H}) \setminus \mathcal{E}_1, \ldots, V(\mathcal{H}) \setminus \mathcal{E}_d)$ is a simple hypergraph on $V(\mathcal{H})$.