Problem Set 6 Due: 11:30 a.m. on Tuesday, April 9

Instructions: All students except for the presenter are to submit solutions to two of the exercises below. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises:

1. Let $\mathcal{H}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{d}\right)$ be a hypergraph on $V(\mathcal{H})=\left\{x_{1}, \ldots, x_{n}\right\}$ such that $\left|\mathcal{E}_{j}\right|=2$, for all $j=1, \ldots, d$ (that is, \mathcal{H} is a simple graph).
(a) Using the notion of the incidence matrix of \mathcal{H}, give conditions that \mathcal{H} must satisfy in order for its dual \mathcal{H}^{*} to also be a simple graph.
(b) Suppose $\mathcal{H}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{8}\right)$ is a hypergraph (with $\left|\mathcal{E}_{j}\right|=2$, for all $j=1, \ldots, 8$) on $V(\mathcal{H})=$ $\left\{x_{1}, \ldots, x_{8}\right\}$ whose incidence matrix is given by

$$
A=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Use part (a) to determine whether \mathcal{H} is a simple graph or not. Is \mathcal{H}^{*} a simple graph? Justify your answer. Do not draw \mathcal{H}.
2. Let $\mathcal{H}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{d}\right)$ be a hypergraph on $V(\mathcal{H})=\left\{x_{1}, \ldots, x_{n}\right\}$. Prove that the dual of a subhypergraph of \mathcal{H} is a partial hypergraph of the dual hypergraph \mathcal{H}^{*}.
3. Let $\mathcal{H}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{d}\right)$ be a simple hypergraph on $V(\mathcal{H})=\left\{x_{1}, \ldots, x_{n}\right\}$ satisfying the following two conditions:
(i) $\mathcal{E}_{j} \cap \mathcal{E}_{k} \neq \emptyset$ for all $j \neq k$;
(ii) $\mathcal{E}_{j} \cup \mathcal{E}_{k} \neq V(\mathcal{H})$ for all $j \neq k$.

Prove that $\mathcal{H}^{\prime}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{d}, V(\mathcal{H}) \backslash \mathcal{E}_{1}, \ldots, V(\mathcal{H}) \backslash \mathcal{E}_{d}\right)$ is a simple hypergraph on $V(\mathcal{H})$.

