Problem Set 3
 Due: 11:30 a.m. on Tuesday, March 5

Instructions: All students except for the presenter are to complete all of the exercises below. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises:

1. Let $n \geq 2$ be an integer. Consider the ideal $I \subseteq k\left[x_{0}, x_{1}, \ldots, x_{2^{n}-1}\right]$ defined by

$$
\left.I=\left\langle x_{i} x_{j}\right| \text { the binary representations of } i \text { and } j \text { differ in at least two digits }\right\rangle .
$$

Use Fröberg's Theorem to show that I does not have a linear resolution. Hint: When considering the complementary graph, what are the parities of a pair of adjacent vertices?

Extra Credit Opportunity: For $1 \leq m<n$ where m is odd, determine if the ideal

$$
\left.J=\left\langle x_{i} x_{j}\right| \text { the binary representations of } i \text { and } j \text { matches in } m \text { digits }\right\rangle
$$

has a linear resolution. Explain your reasoning. In this case, you may assume that the associated complementary graph has a cycle.
2. (The Short Five Lemma) Let R be a commutative ring and consider the following commutative diagram of R-modules and R-module homomorphisms where each row is an exact sequence.

Prove one of the following facts:
(a) If α and γ are injective, then β is also injective.
(b) If α and γ are surjective, then β is also surjective.

