Problem Set 2
 Due: 11:30 a.m. on Tuesday, February 12

Instructions: All students except for the presenter are to complete all of the exercises below. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: All ideals are assumed to be ideals of a commutative ring with identity.

1. Let I, J and K be ideals of a ring R. Prove:
(a) $(I: J) J \subseteq I$;
(b) $((I: J): K)=(I: J K)=((I: K): J)$.
2. Let I and J be ideals of a ring R. Prove:
(a) $r(r(I))=r(I)$;
(b) $I \subseteq r(I)$;
(c) $r(I+J)=r(r(I)+r(J))$.
3. Show that in the polynomial ring $\mathbb{Z}[t]$, the ideal $M=(2, t)$ is maximal, and the ideal $Q=(4, t)$ is M-primary, but is not a power of M.
