Problem Set 8
 Due: 10:00 a.m. on Thursday, March 14

Instructions: Carefully read Sections 4.2-4.4 of the textbook. MATH 7340 students should submit solutions to all of the following problems and MATH 4340 students should submit solutions to only those marked with a "U". A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: From the textbook Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, fourth edition, by David A. Cox, John Little, and Donal O'Shea.

Throughout, k denotes a field.

1U. (Section $4.2 \# 5$) Prove that \mathbf{I} and \mathbf{V} are inclusion-reversing and that $\mathbf{V}(\sqrt{I})=\mathbf{V}(I)$ for any ideal I.

2U. (Section $4.2 \# 14)$ Let $J=\langle x y,(x-y) x\rangle$. Describe $\mathbf{V}(J)$ and show that $\sqrt{J}=\langle x\rangle$.
3U. (Section $4.3 \# 9$) Let I and J be ideals in $R=k\left[x_{1}, \ldots, x_{n}\right]$ where k is an arbitrary field.
(a) Show that $\sqrt{I J}=\sqrt{I \cap J}$.
(b) Give an example to show that the product of radical ideals need not be radical.
(c) Give an example to show that $\sqrt{I J}$ can differ from $\sqrt{I} \sqrt{J}$.

4U. (Section $4.4 \# 1 b)$ Find the Zariski closure of the boundary of the first quadrant in \mathbb{R}^{2}. That is, find the Zariski closure of the set $S=\left\{(a, 0) \in \mathbb{R}^{2} \mid a \geq 0\right\} \cup\left\{(0, b) \in \mathbb{R}^{2} \mid b \geq 0\right\}$. Hint: Determine $\mathbf{I}(S)$. In doing so, it might be helpful to take $f \in \mathbf{I}(S)$ and write $f(x, y)=$ $A(x, y) x y+B(x) x+C(y) y+D$ where $B(x) \in \mathbb{R}[x], C(y) \in \mathbb{R}[y]$ and $D \in \mathbb{R}$.

5U. (Section $4.4 \# 8$) Let $V, W \subseteq k^{n}$ be varieties. Prove that $\mathbf{I}(V): \mathbf{I}(W)=\mathbf{I}(V \backslash W)$. You may use the fact that $I: J \subseteq \mathbf{I}(\mathbf{V}(I) \backslash \mathbf{V}(J))$.
6. (Section $4.4 \# 4)$ Let I and J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Proposition 9 of Section 4.4 says that $I: J \subseteq I: J^{\infty}$. Prove that if I is radical, then $I: J=I: J^{\infty}$.

