Problem Set 7

Due: 10:00 a.m. on Thursday, March 7

Instructions: Carefully read Sections 3.6-4.1 of the textbook. MATH 7340 students should submit solutions to all of the following problems and MATH 4340 students should submit solutions to only those marked with a "U". A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: From the textbook Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, fourth edition, by David A. Cox, John Little, and Donal O'Shea.

Throughout, k denotes a field.

1U. (Section 3.6 \#13) Let $f=x^{2} y+x-1$ and $g=x^{2} y+x+y^{2}-4$. If $h=\operatorname{Res}(f, g, x) \in \mathbb{C}[y]$, show that $h(0)=0$. But if we substitute $y=0$ into f and g, we get $x-1$ and $x-4$. Show that these polynomials have a non-zero resultant. Thus, $h(0)$ is not a resultant.

2U. (Section $3.6 \# 21$) Suppose that $I=\langle f, g\rangle \subseteq \mathbb{C}[x, y]$ and assume that $\operatorname{Res}(f, g, x) \neq 0$. Prove that $\mathbf{V}\left(I_{1}\right)=\pi_{1}(V)$, where $V=\mathbf{V}(I)$ and π_{1} is projection onto the y-axis.

3U. (Section $4.1 \# 1)$ Recall that $\mathbf{V}\left(y-x^{2}, z-x^{3}\right)$ is the twisted cubic in \mathbb{R}^{3}.
(a) Show that $\mathbf{V}\left(\left(y-x^{2}\right)^{2}+\left(z-x^{3}\right)^{2}\right)$ is also the twisted cubic.
(b) Show that any variety $\mathbf{V}(I) \subseteq \mathbb{R}^{n}, I \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, can be defined by a single equation (and hence by a principal ideal).

4U. (Section 4.1 \#2) Let $J=\left\langle x^{2}+y^{2}-1, y-1\right\rangle$. Find $f \in \mathbf{I}(\mathbf{V}(J))$ such that $f \notin J$. You may use the fact that $G=\left\{x^{2}, y-1\right\}$ is a Gröbner basis for J with respect to lex order with $x>y$.
5. (Section 4.1 \#10) In Exercise 3U., you encountered two ideals in $\mathbb{R}[x, y]$ that give the same non-empty variety. Show that one of these ideals is contained in the other. Can you find two ideals in $\mathbb{R}[x, y]$, neither contained in the other, which give the same non-empty variety? Can you do the same for $\mathbb{R}[x]$?

