Problem Set 4 Due: 10:00 a.m. on Thursday, February 7

Instructions: Carefully read Sections 2.6-2.8 of the textbook. MATH 7340 students should submit solutions to all of the following problems and MATH 4340 students should submit solutions to only those marked with a "U". A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: From the textbook Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, fourth edition, by David A. Cox, John Little, and Donal O'Shea.

Throughout, k denotes a field.

1U. (Section $2.6 \# 4)$ Let G and G^{\prime} be Gröbner bases for a non-zero ideal I with respect to the same monomial order in $k\left[x_{1}, \ldots, x_{n}\right]$. Show that $\bar{f}^{G}=\bar{f}^{G^{\prime}}$ for all $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Hence, the remainder on division by a Gröbner basis is even independent of which Gröbner basis we use, as long as we use one particular monomial order. Hint: See Exercise 1 of Section 2.6 in the textbook.

2U. (Section $2.6 \# 10$) Using Buchberger's Criterion, determine whether the following sets G are Gröbner bases for the ideal they generate.
(a) $G=\left\{x^{2}-y, x^{3}-z\right\}$ for grlex order.
(b) $G=\left\{x^{2}-y, x^{3}-z\right\}$ for invlex order.

3U. (Section $2.6 \# 13$) Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero ideal, and let G be a Gröbner basis of I.
(a) Show that $\bar{f}^{G}=\bar{g}^{G}$ if and only if $f-g \in I$. Hint: See Exercise 1 of Section 2.6 in the textbook.
(b) Use Exercise 1 of Section 2.6 to show that

$$
\overline{f+g}^{G}=\bar{f}^{G}+\bar{g}^{G} .
$$

(c) Deduce that

$$
\overline{f g}^{G}={\overline{\bar{f}^{G}} \cdot \bar{g}^{G}}^{G}
$$

4U. (Section $2.7 \# 2 \& 3$) Let $I=\left\langle x^{2}+y, x^{4}+2 x^{2} y+y^{2}+3\right\rangle$.
(a) Use Buchberger's Algorithm to find a Gröbner basis for I with respect to the lex order with $x>y$.
(b) What does you result to part (a) indicate about the variety $\mathbf{V}(I)$?
(c) Find a reduced Gröbner basis for I with respect to the lex order with $x>y$.
5. (Section $2.8 \# 7$) Let the surface S in \mathbb{R}^{3} be formed by taking the union of the straight lines joining pairs of points on the lines

$$
\{x=t, y=0, z=1\} \quad \text { and } \quad\{x=0, y=1, z=t\}
$$

with the same parameter value (i.e., the same t). (This is a special example of a class of surfaces called ruled surfaces.)
(a) Show that the surface S can be given parametrically as

$$
\begin{aligned}
& x=u t \\
& y=1-u \\
& z=t+u(1-t)
\end{aligned}
$$

Hint: The line joining the points $P=(t, 0,1)$ and $Q=(0,1, t)$ is parametrized by $(x, y, z)=$ $u P+(1-u) Q$.
(b) The set $G=\left\{1-2 y+x y+y^{2}-z+y z,-1+u+y, 1+t-x-y-z\right\}$ is a Gröbner basis for the ideal $\langle x-t u, y-1+u, z-t-u+t u\rangle$ with respect to the lex order with $t>u>x>y>z$. Using the method of Examples 4 and 5 from Section 2.8 in the textbook, find an (implicit) equation of a variety V containing the surface S.
(c) Show $V=S$ (that is, show that every point of the variety V can be obtained by substituting some values for t, u in the equations of part (a). Hint: Try to "solve" the implicit equation of V for one variable as a function of the other two.

