Problem Set 3 Due: 10:00 a.m. on Thursday, January 31

Instructions: Carefully read Sections 2.4-2.5 of the textbook. MATH 7340 students should submit solutions to all of the following problems and MATH 4340 students should submit solutions to only those marked with a "U". A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: From the textbook Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, fourth edition, by David A. Cox, John Little, and Donal O'Shea.
Throughout, k denotes a field.

1U. (Section $2.4 \# 3)$ Let $I=\left\langle x^{6}, x^{2} y^{3}, x y^{7}\right\rangle \subseteq k[x, y]$.
(a) In the (m, n)-plane, plot the set of exponent vectors (m, n) of monomials $x^{m} y^{n}$ appearing in elements of I.
(b) If we apply the Division Algorithm to an element $f \in k[x, y]$, using the generators of I as divisors, what terms can appear in the remainder?

2U. (Section $2.4 \# 5$) Suppose that $I=\left\langle x^{\alpha} \mid \alpha \in A\right\rangle$ is a monomial ideal, and let S be the set of all exponents that occur as monomials of I. For any monomial order $>$, prove that the smallest element of S with respect to $>$ must lie in A.
3U. (Section 2.4\#8) If $I=\left\langle x^{\alpha(1)}, \ldots, x^{\alpha(s)}\right\rangle$ is a monomial ideal, prove that a polynomial f is in I if and only if the remainder of f on division by $x^{\alpha(1)}, \ldots, x^{\alpha(s)}$ is zero.

4U. (Section $2.5 \# 5$) Let I be an ideal of $k\left[x_{1} \ldots, x_{n}\right]$. Show that $G=\left\{g_{1}, \ldots, g_{t}\right\} \subseteq I$ is a Gröbner basis of I if and only if the leading term of any element of I is divisible by one of the $\operatorname{LT}\left(g_{i}\right)$.

5U. (Section $2.5 \# 13$) Let

$$
V_{1} \supseteq V_{2} \supseteq V_{3} \supseteq \cdots
$$

be a descending chain of affine varieties. Show that there is some $N \geq 1$ such that $V_{N}=V_{N+1}=$ $V_{N+2}=\cdots$.
6. (Section $2.4 \# 7$) Prove that Dickson's lemma is equivalent to the following statement: given a nonempty subset $A \subseteq \mathbb{Z}_{\geq 0}^{n}$, there are finitely many elements $\alpha(1), \ldots, \alpha(s) \in A$ such that for every $\alpha \in A$, there exists some i and some $\gamma \in \mathbb{Z}_{\geq 0}^{n}$ such that $\alpha=\alpha(i)+\gamma$.
7. (Section $2.5 \# 15$) Given polynomials $f_{1}, f_{2}, \ldots \in k\left[x_{1}, \ldots, x_{n}\right]$, let $\mathbf{V}\left(f_{1}, f_{2}, \ldots\right) \subseteq k^{n}$ be the solutions of the infinite system of equations $f_{1}=f_{2}=\cdots=0$. Show that there is some N such that $\mathbf{V}\left(f_{1}, f_{2}, \ldots\right)=$ $\mathbf{V}\left(f_{1}, \ldots, f_{N}\right)$.
8. (Section $2.5 \# 18$) When an ideal has a basis where some of the elements can be factored, we can use the factorization to help understand the variety.
(a) Show that if $g \in k\left[x_{1}, \ldots, x_{n}\right]$ factors as $g=g_{1} g_{2}$, then for any f, we have

$$
\mathbf{V}(f, g)=\mathbf{V}\left(f, g_{1}\right) \cup \mathbf{V}\left(f, g_{2}\right)
$$

(b) Show that in $\mathbb{R}^{3}, \mathbf{V}\left(y-x^{2}, x z-y^{2}\right)=\mathbf{V}\left(y-x^{2}, x z-x^{4}\right)$.
(c) Use part (a) to describe the variety from part (b).

