Problem Set 10
 Due: 10:00 a.m. on Thursday, March 28

Instructions: Carefully read Sections $5.4-5.5$ of the textbook. MATH 7340 students should submit solutions to all of the following problems and MATH 4340 students should submit solutions to only those marked with a "U". A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper's mailbox in the Department of Mathematics.

Exercises: From the textbook Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, fourth edition, by David A. Cox, John Little, and Donal O'Shea.
Throughout, k denotes a field.

1U. (Section $5.4 \# 1$) Let C be the twisted cubic curve in k^{3}.
(a) Show that C is a subvariety of the surface $S=\mathbf{V}\left(x z-y^{2}\right)$.
(b) Find an ideal $J \subseteq k[S]$ such that $C=\mathbf{V}_{S}(J)$.

2U. (Section $5.4 \# 9$) Let $\alpha: V \rightarrow W$ and $\beta: W \rightarrow V$ be inverse polynomial mappings between two isomorphic varieties V and W. Let $U=\mathbf{V}_{V}(I)$ for some ideal $I \subseteq k[V]$.
(a) Define $J=\left\{\beta^{*}(\phi) \mid \phi \in I\right\}$. Prove that J is an ideal of $k[W]$.
(b) Show that $\alpha(U)$ is a subvariety of W by proving that $\alpha(U)=\mathbf{V}_{W}(J)$.

3U. (Section 5.5\#7) Let $S=\mathbf{V}\left(x^{2}+y^{2}+z^{2}-1\right)$ in \mathbb{R}^{3} and let $W=\mathbf{V}(z)$ be the (x, y)-plane. In this exercise, we will show that S and W are birationally equivalent varieties, via an explicit mapping called stereographic projection.
(a) Derive parametric equations as we did in our example from class on March 21 for the line L_{q} in \mathbb{R}^{3} passing through the north pole $(0,0,1)$ of S and a general point $q=\left(x_{0}, y_{0}, z_{0}\right) \neq(0,0,1)$ in S.
(b) Using the line from part (a) show that $\phi(q)=L_{q} \cap W$ defines a rational mapping $\phi: S \longrightarrow \mathbb{R}^{2}$ This mapping is the stereographic projection.
(c) Show that the rational parametrization of S given by

$$
\begin{aligned}
& x=\frac{2 u}{u^{2}+v^{2}+1} \\
& y=\frac{2 v}{u^{2}+v^{2}+1} \\
& z=\frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}
\end{aligned}
$$

is the inverse mapping, denoted ψ, of ϕ. Be sure to explain where $\phi \circ \psi$ and $\psi \circ \phi$ are defined.
(d) Deduce that S and W are birationally equivalent varieties and find subvarieties $S^{\prime} \subseteq S$ and $W^{\prime} \subseteq W$ such that ϕ and ψ put $S \backslash S^{\prime}$ and $W \backslash W^{\prime}$ into one-to-one correspondence.
4. (Section $5.4 \# 16)$ Let k be algebraically closed. Prove the Weak Nullstellensatz for $k[V]$, which asserts that for any ideal $J \subseteq k[V], \mathbf{V}_{V}(J)=\emptyset$ if and only if $J=k[V]$.

