
S. Cooper MATH 4340/7340

Problem Set 1
Due: 10:00 a.m. on Thursday, January 17

Instructions: Carefully read Sections 1.1–1.3 of the textbook. MATH 7340 students should submit solutions
to all of the following problems and MATH 4340 students should submit solutions to only those marked with
a “U”. A subset of the problems will be graded. Be sure to adhere to the expectations outlined on the sheet
Guidelines for Problem Sets. Submit your solutions in-class or to Dr. Cooper’s mailbox in the Department
of Mathematics.

Exercises: From the textbook Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic
Geometry and Commutative Algebra, fourth edition, by David A. Cox, John Little, and Donal O’Shea.

Throughout, k denotes a field.

1U. (Section 1.1 #2) Let F2 be the field F2 = {0, 1}.

(a) Consider the polynomial g(x, y) = x2y+y2x ∈ F2[x, y]. Show that g(x, y) = 0 for every (x, y) ∈ F2
2,

and explain why this does not contradict Proposition 5.

(b) Find a non-zero polynomial in F2[x, y, z] which vanishes at every point of F3
2. Try to find one

involving all three variables.

(c) Find a non-zero polynomial in F2[x1, . . . , xn] which vanishes at every point of Fn
2 . Can you find

one in which all of x1, . . . , xn appear?

2U. (Section 1.1 #5) In the proof of Proposition 5, we took f ∈ k[x1, . . . , xn] and wrote it as a polynomial
in xn with coefficients in k[x1, . . . , xn−1]. To see what this looks like in a specific case, consider the
polynomial

f(x, y, z) = x5y2z − x4y3 + y5 + x2z − y3z + xy + 2x− 5z + 3.

(a) Write f as a polynomial in x with coefficients in k[y, z].

(b) Write f as a polynomial in y with coefficients in k[x, z].

(c) Write f as a polynomial in z with coefficients in k[x, y].

3U. (Section 1.2 #3) In the plane R2, draw a picture to illustrate

V(x2 + y2 − 4) ∩V(xy − 1) = V(x2 + y2 − 4, xy − 1)

and determine the points of intersection. Note that this is a special case of Lemma 2.

4U. (Section 1.2 #6) Let us show that all finite subsets of kn are affine varieties.

(a) Prove that a single point (a1, . . . , an) ∈ kn is an affine variety.

(b) Prove that every finite subset of kn is an affine variety.

5U. (Section 1.2 #8) It can take some work to show that something is not an affine variety. For example,
consider the set

X = {(x, x) | x ∈ R, x 6= 1} ⊆ R2,

which is the straight line x = y with the point (1, 1) removed. To show that X is not an affine variety,
suppose that X = V(f1, . . . , fs). Then each fi vanishes on X, and if we can show that fi also vanishes
at (1, 1), we will get the desired contradiction. Thus, here is what you are to prove: if f ∈ R[x, y]
vanishes on X, then f(1, 1) = 0. Hint: Let g(t) = f(t, t), which is a polynomial in R[t]. Now apply
the proof of Proposition 5 in Section 1.

6U. (Section 1.2 #15) In Lemma 2 we showed that if V and W are affine varieties, then so are their union
V ∪W and intersection V ∩W . In this exercise we will study how other set-theoretic operations affect
affine varieties.
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(a) Prove that finite unions and intersections of affine varieties are again affine varieties.

(b) Give an example to show that an infinite union of affine varieties need not be an affine variety.
Surprisingly, an infinite intersection of affine varieties is still an affine variety. This is a consequence
of the Hilbert Basis Theorem, which will be discussed in Chapters 2 and 4.

(c) Give an example to show that the set-theoretic difference V \W of two affine varieties need not
be an affine variety.

(d) Let V ⊆ kn and W ⊆ km be two affine varieties, and let

V ×W = {(x1, . . . , xn, y1, . . . , ym) ∈ kn+m | (x1, . . . , xn) ∈ V, (y1, . . . , ym) ∈W}

be their Cartesian product. Prove that V ×W is an affine variety in kn+m. Hint: If V is defined by
f1, . . . , fs ∈ k[x1, . . . , xn], then we can regard f1, . . . , fs as polynomials in k[x1, . . . , xn, y1, . . . , ym],
and similarly for W . Show this gives defining equations for the Cartesian product.

7U. (Section 1.3 #4) Consider the parametric representation

x =
t

1 + t

y = 1− 1

t2
.

(a) Find the equation of the affine variety determined by the above parametric equations.

(b) Show that the above equations parametrize all points of the variety found in part (a) except for
the point (1,1).

8. (Section 1.3 # 8) Consider the curve defined by y2 = cx2 − x3, where c is some constant. A picture
can be found on page 24 of the text when c > 0. Our goal is to parametrize this curve.

(a) Show that a line will meet this curve at either 0, 1, 2, or 3 points. Illustrate your answer with a
picture. Hint: Let the equation of the line be either x = a or y = mx + b.

(b) Show that a nonvertical line through the origin meets the curve at exactly one other point when
m2 6= c. Draw a picture to illustrate this, and see if you can come up with an intuitive explanation
as to why this happens.

(c) Now draw the vertical line x = 1. Given a point (1, t) on this line, draw the line connecting (1, t)
to the origin. This will intersect the curve in a point (x, y). Draw a picture to illustrate this, and
argue geometrically that this gives a parametrization of the entire curve.

(d) Show that the geometric description from part (c) leads to the parametrization

x = c− t2

y = t(c− t2).

9. (Section 1.2 #11) So far, we have discussed varieties over R or C. It is also possible to consider varieties
over the field Q, although the questions here tend to be much harder. For example, let n be a positive
integer, and consider the variety Fn ⊆ Q2 defined by

xn + yn = 1.

Notice that there are some obvious solutions when x or y is zero. We call these trivial solutions. An
interesting question is whether or not there are any nontrivial solutions.

(a) Show that Fn has two trivial solutions if n is odd and four trivial solutions if n is even.

(b) Show that Fn has a nontrivial solution for some n ≥ 3 if and only if Fermat’s Last Theorem were
false. Fermat’s Last Theorem states that, for n ≥ 3, the equation

xn + yn = zn

has no solutions where x, y, and z are non-zero integers. The general case of this conjecture was
proved by Andrew Wiles in 1994 using some very sophisticated number theory. The proof is
extremely difficult.
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