Quiz 9 Sample Solutions

Name: _____

Student Number: _____

In the space provided, please write your solutions to the following exercises. *Fully explain your reasoning*. Remember to use good notation and full sentences.

Good Luck!

- 1. Let $\varphi: G \to H$ be a group homomorphism.
 - (i) Complete the following definition: The kernel of φ is

Solution: $\varphi^{-1}(\{e_H\}) = \{g \in G \mid \varphi(g) = e_H\}.$

(ii) The map $\varphi : \mathbb{M}_2(\mathbb{R}) \to \mathbb{R}$ defined by

$$\varphi\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right)=b,$$

where $\mathbb{M}_2(\mathbb{R})$ is the additive group of 2×2 matrices with entries in \mathbb{R} , is a group homomorphism. Determine the kernel of φ .

Solution: We have

$$\operatorname{Ker}(\varphi) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \mathbb{M}_2(\mathbb{R}) : b = 0 \right\} = \left\{ \left(\begin{array}{cc} a & 0 \\ c & d \end{array} \right) : a, c, d \in \mathbb{R} \right\}.$$

1

2. Determine (with justification!) if the map $\varphi : GL_2(\mathbb{R}) \to \mathbb{R}$ defined by

$$\varphi\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right) = a + d$$

is a group homomorphism.

Solution: φ is not a group homomorphism since it does not preserve the group operation. For example,

$$\varphi\left(\left(\begin{array}{rrr}1&2\\3&4\end{array}\right)\left(\begin{array}{rrr}1&2\\0&1\end{array}\right)\right)=\varphi\left(\left(\begin{array}{rrr}1&4\\3&10\end{array}\right)\right)=1+10=11$$

but

$$\varphi\left(\left(\begin{array}{cc}1&2\\3&4\end{array}\right)\right)+\varphi\left(\left(\begin{array}{cc}1&2\\0&1\end{array}\right)\right)=5+2=7.$$

Since $11 \neq 7$, we have that φ does not preserve the group operation.

3. If $\varphi: G \to H$ is a group homomorphism and G is cyclic, prove that $\varphi(G)$ is also cyclic.

Solution: Say that $G = \langle g \rangle$. We claim that $\varphi(G) = \langle \varphi(g) \rangle$. Clearly $\langle \varphi(g) \rangle \subset \varphi(G)$ since for any integer *n* we have

$$[\varphi(g)]^n = \varphi(g^n) \in \varphi(G).$$

On the other hand, let $x \in \varphi(G)$. Then there exists an element a in G such that $x = \varphi(a)$. But $G = \langle g \rangle$ implies that $a = g^m$ for some integer m. Hence,

$$x = \varphi(a) = \varphi(g^m) = [\varphi(g)]^m \in \langle \varphi(g) \rangle$$

and so $\varphi(G) \subset \langle \varphi(g) \rangle$.