Quiz 9

Sample Solutions

Name: \qquad

Student Number: \qquad

In the space provided, please write your solutions to the following exercises. Fully explain your reasoning. Remember to use good notation and full sentences.

Good Luck!

1. Let $\varphi: G \rightarrow H$ be a group homomorphism.
(i) Complete the following definition: The kernel of φ is

Solution: $\varphi^{-1}\left(\left\{e_{H}\right\}\right)=\left\{g \in G \mid \varphi(g)=e_{H}\right\}$.
(ii) The $\operatorname{map} \varphi: \mathbb{M}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by

$$
\varphi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=b
$$

where $\mathbb{M}_{2}(\mathbb{R})$ is the additive group of 2×2 matrices with entries in \mathbb{R}, is a group homomorphism. Determine the kernel of φ.

Solution: We have

$$
\operatorname{Ker}(\varphi)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{M}_{2}(\mathbb{R}): b=0\right\}=\left\{\left(\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right): a, c, d \in \mathbb{R}\right\}
$$

2. Determine (with justification!) if the $\operatorname{map} \varphi: G L_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by

$$
\varphi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=a+d
$$

is a group homomorphism.
Solution: φ is not a group homomorphism since it does not preserve the group operation. For example,

$$
\varphi\left(\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\right)=\varphi\left(\left(\begin{array}{cc}
1 & 4 \\
3 & 10
\end{array}\right)\right)=1+10=11
$$

but

$$
\varphi\left(\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\right)+\varphi\left(\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\right)=5+2=7
$$

Since $11 \neq 7$, we have that φ does not preserve the group operation.
3. If $\varphi: G \rightarrow H$ is a group homomorphism and G is cyclic, prove that $\varphi(G)$ is also cyclic.

Solution: Say that $G=\langle g\rangle$. We claim that $\varphi(G)=\langle\varphi(g)\rangle$. Clearly $\langle\varphi(g)\rangle \subset \varphi(G)$ since for any integer n we have

$$
[\varphi(g)]^{n}=\varphi\left(g^{n}\right) \in \varphi(G)
$$

On the other hand, let $x \in \varphi(G)$. Then there exists an element a in G such that $x=\varphi(a)$. But $G=\langle g\rangle$ implies that $a=g^{m}$ for some integer m. Hence,

$$
x=\varphi(a)=\varphi\left(g^{m}\right)=[\varphi(g)]^{m} \in\langle\varphi(g)\rangle
$$

and so $\varphi(G) \subset\langle\varphi(g)\rangle$.

