## Quiz 7

Sample Solutions

Name: $\qquad$

Student Number: $\qquad$

In the space provided, please write your solutions to the following exercises. Fully explain your reasoning. Remember to use good notation and full sentences.

Good Luck!

1. Let

$$
H=\left\{A \in G L_{2}(\mathbb{R}): A=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\right\}
$$

which is a subgroup of $G L_{2}(\mathbb{R})$. Prove that $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is isomorphic to $H$.
Solution: Define $\varphi: \mathbb{C}^{*} \rightarrow H$ by

$$
\varphi(a+i b)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

We check the four conditions of a group isomorphism:

- $\varphi$ is well-defined: Suppose $a+i b=c+i d$. Then $a=c$ and $b=d$ so that

$$
\varphi(a+i b)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)=\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)=\varphi(c+i d)
$$

- $\varphi$ is injective: If $\varphi(a+i b)=\varphi(c+i d)$, then

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)=\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)
$$

and so $a=c$ and $b=d$. Thus, $a+i b=c+i d$, as desired.

- $\underline{\varphi \text { is surjective: }}$ Let $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \in H$. Then $\varphi(a+i b)=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$.
- $\varphi$ preserves the group operation: We have

$$
\begin{aligned}
\varphi((a+i b)(c+i d))=\varphi(a c-b d+i(a d+b c)) & =\left(\begin{array}{cc}
a c-b d & a d+b c \\
-a d-b c & a c-b d
\end{array}\right) \\
& =\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right) \\
& =\varphi(a+i b) \varphi(c+i d) .
\end{aligned}
$$

2. Let $H_{1}$ and $H_{2}$ be subgroups of $G_{1}$ and $G_{2}$, respectively. Prove that $H_{1} \times H_{2}$ is a subgroup of $G_{1} \times G_{2}$.

Solution: Let $e_{G_{i}}$ denote the identity of the group $G_{i}$ for $i=1,2$, respectively. Note that the identity of $G_{1} \times G_{2}$ is $\left(e_{G_{1}}, e_{G_{2}}\right)$ which is in $H_{1} \times H_{2}$ (since $H_{i} \leq G_{i}$ for $i=1$ and 2). Thus, $H_{1} \times H_{2} \neq \emptyset$. Now let $(x, y)$ and $(s, t)$ be two elements of $H_{1} \times H_{2}$. Then, since $H_{i}$ is a subgroup of $G_{i}$ for $i=1$ and 2, we know that $x s^{-1} \in H_{1}$ and $y t^{-1} \in H_{2}$. Hence,

$$
(x, y)(s, t)^{-1}=(x, y)\left(s^{-1}, t^{-1}\right)=\left(x s^{-1}, y t^{-1}\right) \in H_{1} \times H_{2} .
$$

The result now follows by the One-Step Subgroup Test.
3. Complete the following definition: Let $G$ be a group with subgroups $H$ and $K$. We say that $G$ is the internal direct product of $H$ and $K$ if

## Solution:

- $G=H K=\{h k \mid h \in H, k \in K\}$
- $H \cap K=\{e\}$
- $h k=k h$ for all $h \in H$ and for all $k \in K$.

