MATH 2020: Algebra 1

Quiz 7 Sample Solutions

Name: _____

Student Number: _____

In the space provided, please write your solutions to the following exercises. *Fully explain your reasoning.* Remember to use good notation and full sentences.

Good Luck!

1. Let

$$H = \left\{ A \in GL_2(\mathbb{R}) : A = \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) \right\},$$

which is a subgroup of $GL_2(\mathbb{R})$. Prove that $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is isomorphic to H.

Solution: Define $\varphi : \mathbb{C}^* \to H$ by

$$\varphi(a+ib) = \left(\begin{array}{cc} a & b\\ -b & a \end{array}\right)$$

We check the four conditions of a group isomorphism:

• φ is well-defined: Suppose a + ib = c + id. Then a = c and b = d so that

$$\varphi(a+ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \varphi(c+id).$$

• $\underline{\varphi}$ is injective: If $\varphi(a+ib) = \varphi(c+id)$, then

$$\left(\begin{array}{cc}a&b\\-b&a\end{array}\right) = \left(\begin{array}{cc}c&d\\-d&c\end{array}\right)$$

and so a = c and b = d. Thus, a + ib = c + id, as desired.

•
$$\underline{\varphi}$$
 is surjective: Let $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in H$. Then $\varphi(a+ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

• φ preserves the group operation: We have

$$\varphi((a+ib)(c+id)) = \varphi(ac - bd + i(ad + bc)) = \begin{pmatrix} ac - bd & ad + bc \\ -ad - bc & ac - bd \end{pmatrix}$$
$$= \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix}$$
$$= \varphi(a+ib)\varphi(c+id).$$

Turn over for Exercises (2) and (3) ...

2. Let H_1 and H_2 be subgroups of G_1 and G_2 , respectively. Prove that $H_1 \times H_2$ is a subgroup of $G_1 \times G_2$.

Solution: Let e_{G_i} denote the identity of the group G_i for i = 1, 2, respectively. Note that the identity of $G_1 \times G_2$ is (e_{G_1}, e_{G_2}) which is in $H_1 \times H_2$ (since $H_i \leq G_i$ for i = 1 and 2). Thus, $H_1 \times H_2 \neq \emptyset$. Now let (x, y) and (s, t) be two elements of $H_1 \times H_2$. Then, since H_i is a subgroup of G_i for i = 1 and 2, we know that $xs^{-1} \in H_1$ and $yt^{-1} \in H_2$. Hence,

$$(x,y)(s,t)^{-1} = (x,y)(s^{-1},t^{-1}) = (xs^{-1},yt^{-1}) \in H_1 \times H_2.$$

The result now follows by the One-Step Subgroup Test.

3. Complete the following definition: Let G be a group with subgroups H and K. We say that G is the *internal direct product* of H and K if

Solution:

- $G = HK = \{hk \mid h \in H, k \in K\}$
- $H \cap K = \{e\}$
- hk = kh for all $h \in H$ and for all $k \in K$.