Quiz 5

Sample Solutions

Name: \qquad

Student Number: \qquad

In the space provided, please write your solutions to the following exercises. Fully explain your reasoning. Remember to use good notation and full sentences.

Good Luck!

1. Suppose that G is a group and let $a, b \in G$. Prove that if $|a|=m$ and $|b|=n$ with $\operatorname{gcd}(m, n)=1$, then $\langle a\rangle \cap\langle b\rangle=\{e\}$.

Solution: We have that $\langle a\rangle \cap\langle b\rangle$ is a subgroup of both $\langle a\rangle$ and $\langle b\rangle$. To see this, note that $e=a^{0}=b^{0} \in\langle a\rangle \cap\langle b\rangle$ and so $\langle a\rangle \cap\langle b\rangle \neq \emptyset$. In addition, if $x, y \in\langle a\rangle \cap\langle b\rangle$, then $x, y \in\langle a\rangle$ and $x, y \in\langle b\rangle$. Since $\langle a\rangle$ and $\langle b\rangle$ are groups, we know that $x y^{-1} \in\langle a\rangle$ and $x y^{-1} \in\langle b\rangle$. That is, $x y^{-1} \in\langle a\rangle \cap\langle b\rangle$. This verifies the claim that $\langle a\rangle \cap\langle b\rangle \leq\langle a\rangle$ and $\langle a\rangle \cap\langle b\rangle \leq\langle a\rangle$ (by the One-Step Subgroup Test). Thus, by the Fundamental Theorem of Cyclic Groups (from class), $|\langle a\rangle \cap\langle b\rangle|$ divides both $|\langle a\rangle|=|a|=m$ and $|\langle b\rangle|=|b|=n$. Since $\operatorname{gcd}(m, n)=1$, we must have that $|\langle a\rangle \cap\langle b\rangle|=1$ and so $\langle a\rangle \cap\langle b\rangle=\{e\}$.
2. (i) Complete the following definition: Let X be a set. A permutation $\sigma \in S_{X}$ is a cycle of length k if

Solution: there exist $a_{1}, a_{2}, \ldots, a_{k} \in X$ such that

$$
\sigma\left(a_{1}\right)=a_{2}, \sigma\left(a_{2}\right)=a_{3}, \ldots, \sigma\left(a_{k-1}\right)=a_{k}, \sigma\left(a_{k}\right)=a_{1}
$$

and $\sigma(x)=x$ for all other elements in X.
(ii) Compute each of the following.
(iia) $(1345)(234)$
Solution: $(1345)(234)=(135)(24)$
(iib) $[(1235)(467)]^{-1}$
Solution: $[(1235)(467)]^{-1}=(467)^{-1}(1235)^{-1}=(476)(1532)$

