MATH 2020: Algebra 1 Dr. S. Cooper, Winter 2018

Quiz 4
Sample Solutions

Name:

Student Number:

In the space provided, please write your solutions to the following exercises. Fully explain
your reasoning. Remember to use good notation and full sentences.

Good Luck!

1. Let G be a group and suppose that (ab)? = a?b* for all a and b in G. Prove that G is
an abelian group.

Solution: For all a,b € GG, we have
abab = (ab)* = a*b* = aabb.
Thus, by left-hand and right-hand cancellation, we have
a ‘ababb™! = a 'aabbb™!

and so
ba = ab.

We conclude that G is Abelian.
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2. Let G be the group of 2 x 2 matrices with real-valued entries under addition and
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Prove that H is a subgroup of G.

Solution: Note that H is non-empty since
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Observe that, since A, B € H, we have

(a—e)+(d—h)=(a+d)—(e+h)=0+0=0

and thus A+ B~! € H. Therefore, H is a subgroup of G.



