Quiz 2 Sample Solutions

Name: _____

Student Number: _____

In the space provided, please write your solution to the following exercises. *Fully explain your reasoning*. Remember to use good notation and full sentences.

Good Luck!

- 1. Let $f: A \to B$ and $g: B \to C$ be maps.
 - (i) Complete the following definition: g is one-to-one if

Solution: $g(b_1) = g(b_2)$ implies that $b_1 = b_2$.

(ii) If $g \circ f$ is onto and g is one-to-one, show that f is onto.

Solution: Let $b \in B$. We need to show that there exists an element a in A such that f(a) = b. Consider g(b) := c. Since $g \circ f$ is onto, there exists an element a in A such that

$$g(f(a)) = c = g(b).$$

Since g is one-to-one, this implies that f(a) = b which shows that f is onto.

2. Define a relation ~ on \mathbb{R}^2 by stating that $(a, b) \sim (c, d)$ if and only if $a^2 + b^2 \leq c^2 + d^2$. Show that ~ is transitive but not symmetric.

Solution: We first show that \sim is transitive. Suppose that $(a, b) \sim (c, d)$ and that $(c, d) \sim (e, f)$. Then

$$a^{2} + b^{2} \le c^{2} + d^{2} \le e^{2} + f^{2}.$$

Since $a^2 + b^2 \le e^2 + f^2$, we have that $(a, b) \sim (e, f)$ and thus \sim is indeed transitive.

To see that ~ is not symmetric, consider (1,0) and (1,1) in \mathbb{R}^2 . Since $1^2 + 0^2 \leq 1^2 + 1^2$, we have $(1,0) \sim (1,1)$. However, $1^2 + 1^2 \leq 1^2 + 0^2$ and so $(1,1) \not\sim (1,0)$ showing that the relation is not symmetric.

3. Prove that $n! > 2^n$ for all integers $n \ge 4$.

Solution: Let n = 4. Then $4! = 24 > 2^4 = 16$ and so the claim is true for n = 4. Now assume that $k! > 2^k$ for some integer $k \ge 4$. Then

$$\begin{aligned} (k+1)! &= (k+1)k! \\ &> (k+1)2^k \\ &\geq (4+1)2^k \\ &= 5 \cdot 2^k \\ &> 4 \cdot 2^k \\ &= 2^2 \cdot 2^k \\ &= 2^{k+2} \\ &> 2^{k+1}. \end{aligned}$$

Therefore, by the Principle of Mathematical Induction, we conclude that $n! > 2^n$ for all integers $n \ge 4$.