Quiz 2
 Sample Solutions

Name: \qquad

Student Number: \qquad

In the space provided, please write your solution to the following exercises. Fully explain your reasoning. Remember to use good notation and full sentences.

Good Luck!

1. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be maps.
(i) Complete the following definition: g is one-to-one if

Solution: $g\left(b_{1}\right)=g\left(b_{2}\right)$ implies that $b_{1}=b_{2}$.
(ii) If $g \circ f$ is onto and g is one-to-one, show that f is onto.

Solution: Let $b \in B$. We need to show that there exists an element a in A such that $f(a)=b$. Consider $g(b):=c$. Since $g \circ f$ is onto, there exists an element a in A such that

$$
g(f(a))=c=g(b)
$$

Since g is one-to-one, this implies that $f(a)=b$ which shows that f is onto.
2. Define a relation \sim on \mathbb{R}^{2} by stating that $(a, b) \sim(c, d)$ if and only if $a^{2}+b^{2} \leq c^{2}+d^{2}$. Show that \sim is transitive but not symmetric.

Solution: We first show that \sim is transitive. Suppose that $(a, b) \sim(c, d)$ and that $(c, d) \sim(e, f)$. Then

$$
a^{2}+b^{2} \leq c^{2}+d^{2} \leq e^{2}+f^{2} .
$$

Since $a^{2}+b^{2} \leq e^{2}+f^{2}$, we have that $(a, b) \sim(e, f)$ and thus \sim is indeed transitive.
To see that \sim is not symmetric, consider $(1,0)$ and $(1,1)$ in \mathbb{R}^{2}. Since $1^{2}+0^{2} \leq 1^{2}+1^{2}$, we have $(1,0) \sim(1,1)$. However, $1^{2}+1^{2} \not \leq 1^{2}+0^{2}$ and so $(1,1) \nsim(1,0)$ showing that the relation is not symmetric.
3. Prove that $n!>2^{n}$ for all integers $n \geq 4$.

Solution: Let $n=4$. Then $4!=24>2^{4}=16$ and so the claim is true for $n=4$. Now assume that $k!>2^{k}$ for some integer $k \geq 4$. Then

$$
\begin{aligned}
(k+1)! & =(k+1) k! \\
& >(k+1) 2^{k} \\
& \geq(4+1) 2^{k} \\
& =5 \cdot 2^{k} \\
& >4 \cdot 2^{k} \\
& =2^{2} \cdot 2^{k} \\
& =2^{k+2} \\
& >2^{k+1} .
\end{aligned}
$$

Therefore, by the Principle of Mathematical Induction, we conclude that $n!>2^{n}$ for all integers $n \geq 4$.

