Quiz 1
 Sample Solutions

Name: \qquad

Student Number: \qquad

In the space provided, please write your solution to the following exercises. Fully explain your reasoning. Remember to use good notation and full sentences.

Good Luck!

1. Let A and B be sets in the universal set \mathcal{U}. Complete the following definitions:
(i) The complement of A is

Solution: $A^{\prime}=\{x \mid x \in \mathcal{U}$ and $x \notin A\}$.
(ii) The union of A and B is

Solution: $A \cup B=\{x \mid x \in A$ or $x \in B\}$.
2. Let A and B be sets. Prove $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

Solution: We want to show that $(A \cap B)^{\prime} \subset A^{\prime} \cup B^{\prime}$ and $A^{\prime} \cup B^{\prime} \subset(A \cap B)^{\prime}$. Towards the first inclusion, let $x \in(A \cap B)^{\prime}$. Then $x \notin A \cap B$. Thus, either $x \notin A$ or $x \notin B$ (or both). Hence, by the definition of A^{\prime} and B^{\prime}, we have that $x \in A^{\prime}$ or $x \in B^{\prime}$ and so $x \in A^{\prime} \cup B^{\prime}$. This shows that $(A \cap B)^{\prime} \subset A^{\prime} \cup B^{\prime}$.

To show the reverse inclusion, let $x \in A^{\prime} \cup B^{\prime}$. Then $x \in A^{\prime}$ or $x \in B^{\prime}$, and so $x \notin A$ or $x \notin B$. Therefore, x cannot be an element of $A \cap B$. That is, $x \notin A \cap B$ and so $x \in(A \cap B)^{\prime}$ (by definition of set complement). This shows that $A^{\prime} \cup B^{\prime} \subset(A \cap B)^{\prime}$.

Since $(A \cap B)^{\prime} \subset A^{\prime} \cup B^{\prime}$ and $A^{\prime} \cup B^{\prime} \subset(A \cap B)^{\prime}$, we conclude that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ as desired.

