Quiz 10
 Sample Solutions

Name: \qquad

Student Number: \qquad

In the space provided, please write your solutions to the following exercises. Fully explain your reasoning. Remember to use good notation and full sentences.

Good Luck!

1. Let R be a ring.
(i) Complete the following definition: R is an integral domain if

Solution: R is a commutative ring with identity such that for every $a, b \in R$ such that $a b=0$, either $a=0$ or $b=0$.
(ii) An element x in R is called an idempotent if $x^{2}=x$. Prove that the only idempotents in an integral domain are 0 and 1.

Solution: Suppose that R is an integral domain. Let $x \in R$ be an idempotent. Then $x^{2}=x$ and so

$$
0=x^{2}-x=x(x-1) .
$$

Since R is an integral domain, we must have that either $x=0$ or $x-1=0$. Hence, $x=0$ or $x=1$.
2. Let R be a ring. Define the center of R to be

$$
Z(R)=\{a \in R \mid a r=r a \text { for all } r \in R\}
$$

Prove that $Z(R)$ is a subring of R.
Solution: First note that $0 \in Z(R)$ since

$$
0 r=r 0=0
$$

for all $r \in R$. Thus, $Z(R) \neq \emptyset$. Also, if $x, y \in Z(R)$ then for all $r \in R$ we have

- $(x y) r=x(y r)=x(r y)=(x r) y=(r x) y=r(x y)$
- $(x-y) r=x r-y r=r x-r y=r(x-y)$
and so $x y$ and $x-y$ are both elements of $Z(R)$. Therefore, by the Subring Test, $Z(R)$ is a subring of R.

3. Determine (with justification!) the characteristic of the field formed by the set of matrices

$$
F=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

with entries in \mathbb{Z}_{2}.
Solution: Note that the identity of F is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and that

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Thus, the order of the identity element (in the additive abelian group $(F,+)$) is 2 . By Lemma 16.18 of our textbook, this implies that the characteristic of F is 2 .

