Quiz 10 Sample Solutions

Name: _____

Student Number: _____

In the space provided, please write your solutions to the following exercises. *Fully explain your reasoning*. Remember to use good notation and full sentences.

Good Luck!

- 1. Let R be a ring.
 - (i) Complete the following definition: R is an *integral domain* if

Solution: R is a commutative ring with identity such that for every $a, b \in R$ such that ab = 0, either a = 0 or b = 0.

(ii) An element x in R is called an *idempotent* if $x^2 = x$. Prove that the only idempotents in an integral domain are 0 and 1.

Solution: Suppose that R is an integral domain. Let $x \in R$ be an idempotent. Then $x^2 = x$ and so

$$0 = x^2 - x = x(x - 1).$$

Since R is an integral domain, we must have that either x = 0 or x - 1 = 0. Hence, x = 0 or x = 1.

1

2. Let R be a ring. Define the *center* of R to be

$$Z(R) = \{ a \in R \mid ar = ra \text{ for all } r \in R \}.$$

Prove that Z(R) is a subring of R.

Solution: First note that $0 \in Z(R)$ since

$$0r = r0 = 0$$

for all $r \in R$. Thus, $Z(R) \neq \emptyset$. Also, if $x, y \in Z(R)$ then for all $r \in R$ we have

(xy)r = x(yr) = x(ry) = (xr)y = (rx)y = r(xy)
(x - y)r = xr - yr = rx - ry = r(x - y)

and so xy and x - y are both elements of Z(R). Therefore, by the Subring Test, Z(R) is a subring of R.

3. Determine (with justification!) the characteristic of the field formed by the set of matrices

$$F = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \right\}$$

with entries in \mathbb{Z}_2 .

Solution: Note that the identity of F is

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

and that

$$\left(\begin{array}{rrr}1 & 0\\0 & 1\end{array}\right) + \left(\begin{array}{rrr}1 & 0\\0 & 1\end{array}\right) = \left(\begin{array}{rrr}0 & 0\\0 & 0\end{array}\right).$$

Thus, the order of the identity element (in the additive abelian group (F, +)) is 2. By Lemma 16.18 of our textbook, this implies that the characteristic of F is 2.