MATH 2020: Algebra 1 Tutorial 9 Worksheet - March 19, 2018

Question 1. Prove whether or not each of the following maps is a homomorphism? If the map is a homomorphism, what is its kernel?
(a) $\phi: \mathbb{R}^{*} \rightarrow G L_{2}(\mathbb{R})$ defined by

$$
\phi(a)=\left(\begin{array}{ll}
1 & 0 \\
0 & a
\end{array}\right)
$$

(b) $\phi: \mathbb{R} \rightarrow G L_{2}(\mathbb{R})$ defined by

$$
\phi(a)=\left(\begin{array}{ll}
1 & a \\
1 & 0
\end{array}\right)
$$

$(\mathbf{c}): \phi: G L_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by

$$
\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=a+d
$$

(d): $\phi: G L_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{*}$ defined by

$$
\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=a d-b c
$$

(e) $\phi: \mathbb{M}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by

$$
\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=b
$$

Note: Take care in recognizing the appropriate group operations.
Question 2. Let A be an $m \times n$ matrix. Show that matrix multiplication, $x \mapsto A x$, defines a homomorphism $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Question 3. If G is an abelian group and $n \in \mathbb{N}$, show that $\phi: G \rightarrow G$ defined by $g \mapsto g^{n}$ is a group homomorphism.

Question 4. If $\phi: G \rightarrow H$ is a group homomorphism and G is abelian, prove that $\phi(G)$ is also abelian.

Question 5. If $\phi: G \rightarrow H$ is a group homomorphism and G is cyclic, prove that $\phi(G)$ is also cyclic.
Question 6. Show that a homomorphism defined on a cyclic group is completely determined by its action on the generator of the group.

