MATH 2020: Algebra 1 Tutorial 8 Worksheet – March 12, 2018

Question 1. For each of the following groups G, determine whether H is a normal subgroup of G. If H is a normal subgroup, write out a Cayley table for the factor group G/H.

(a): $G = A_5$ and $H = \{(1), (123), (132)\}.$

(b):
$$G = S_4$$
 and $H = D_4$.

(c): $G = Q_8$ and $H = \{1, -1, I, -I\}$.

Question 2. Let *H* and *K* be normal subgroups of *H*. Show that the intersection $N = H \cap K$ is a normal subgroup of *G*.

Question 3. If G is an abelian group with normal subgroup H, show that G/H must also be abelian.

Question 4. Prove or disprove: If H is a normal subgroup of G such that H and G/H are abelian, then G is abelian.

Question 5. Prove or disprove: If H and G/H are cyclic, then G is cyclic.

Question 6. Let *H* be a subgroup of index 2 in a group *G*. Prove that *H* must be a normal subgroup of *G*. Conclude that S_n is not simple for $n \ge 3$.

Question 7. If a group G has exactly one subgroup H of order k, prove that H is normal in G.

Question 8. Define the *centralizer* of an element g in a group G to be the set

$$C(g) = \{ x \in G \mid xg = gx \}.$$

Show that C(g) is a subgroup of G. If g is a generator of a normal subgroup of G, prove that C(g) is normal in G.