MATH 2020: Algebra 1 Tutorial 6 Worksheet - February 26, 2018

Question 1. Use Fermat's Little Theorem to show that if $p=4 n+3$ is prime, there is no solution to the equation $x^{2} \equiv-1(\bmod p)$.

Question 2. If $g h g^{-1} \in H$ for all $g \in G$ and $h \in H$, show that right cosets are identical to left cosets. That is, show that $g H=H g$ for all $g \in G$.

Question 3. Let G be a group and H a subgroup of G. Prove whether relation $\phi: L_{H} \rightarrow R_{H}$ from the right cosets to the left cosets given by $\phi(g H)=H g$ for $g \in G$ is a mapping or not.

Note: This is problem 13 in section 6.4 of the textbook rephrased.
Question 4. Suppose that $[G: H]=2$. If a and b are not in H, show that $a b \in H$.
Question 5. If $[G: H]=2$, prove that $g H=H g$ for all $g \in G$.
Question 6. Suppose that $g^{n}=e$. Prove that the order of g divides n.
Question 7. Suppose that G is a finite group with 60 elements. What are the orders of possible subgroups of G ?

Question 8. Let H be a subgroup of a group G and suppose that $g_{1}, g_{2} \in G$. Prove that the following conditions are equivalent.
(a) $g_{1} H=g_{2} H$
(b) $H g_{1}^{-1}=H g_{2}^{-1}$
(c) $g_{1} H \subset g_{2} H$
(d) $g_{2} \in g_{1} H$
(e) $g_{1}^{-1} g_{2} \in H$

