MATH 2020: Algebra 1
 Tutorial 5 Worksheet - February 5, 2018

Question 1. Suppose that G is a group and let $a, b \in G$, with $|a|=m,|b|=n$ and $\operatorname{gcd}(m, n)=1$.
(a): Show that $\langle a\rangle \cap\langle b\rangle$ is a subgroup of both $\langle a\rangle$ and $\langle b\rangle$.
(b): Use the Fundamental Theorem of Cyclic Groups to conclude that $\langle a\rangle \cap\langle b\rangle=\{e\}$.

Note that this is the same as question 7 from last week's tutorial. The idea is to see a different approach to solving it.

Question 2. Let p and q be distinct primes. How many generators does $\mathbb{Z}_{p q}$ have?
Question 3. Let a be an element in a group G. What is a generator for the subgroup $\left\langle a^{m}\right\rangle \cap\left\langle a^{n}\right\rangle$?
Question 4. Denote a cycle by $\left(a_{1} a_{2} \ldots a_{n}\right)$. Find its inverse.
Question 5. Let $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in S_{n}$ be a product of disjoint cycles.
(a): Prove that the order of cycle σ_{i} is its length.
(b): Denote $\ell:=l c m\left(\right.$ length $\left(\sigma_{1}\right)$, length $\left(\sigma_{2}\right), \ldots$, length $\left.\left(\sigma_{m}\right)\right)$. Show that $\sigma^{\ell}=i d$.
(c): Show that if $\sigma^{k}=i d$, then $\ell \mid k$. Conclude that $|\sigma|=\ell$.

Question 6. Let $\sigma \in S_{n}$ be a cycle. Prove that σ can be written as the product of at most $n-1$ transpositions.

Question 7. Let $\sigma \in S_{n}$. If σ is not a cycle, prove that σ can be written as a product of at most $n-2$ transpositions.

Question 8. Let $\alpha \in S_{n}$ for $n \geq 3$. If $\alpha \beta=\beta \alpha$ for all $\beta \in S_{n}$, prove that α must be the identity permutation. This shows that the center of S_{n} is the trivial subgroup, i.e. $Z\left(S_{n}\right)=\{i d\}$, for all $n \geq 3$.

Question 9. Compute each of the following:
(a): (12)(1253)
(b): (143)(23)(24)
(c): $[(12)(34)(12)(47)]^{-1}$
(d): $(12357)^{-1}$

