MATH 2020: Algebra 1 Tutorial 4 Worksheet - January 29, 2018

Question 1. Let a and b be elements of a group G. If $a^{4} b=b a$ and $a^{3}=e$, prove that $a b=b a$.
Question 2. Let G be the group of 2×2 real valued matrices under addition and

$$
H=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a+d=0\right\}
$$

Prove that H is a subgroup of G.
Question 3. Prove or disprove: $S L_{2}(\mathbb{Z})$, the set of 2×2 matrices with integer entries and determinant one, is a subgroup of $S L_{2}(\mathbb{R})$.

Question 4. Prove or disprove: If H and K are subgroups of a group G, then $H \cup K$ is a subgroup of G.

Question 5. Let G be a group and $g \in G$. Show that

$$
Z(G)=\{x \in G \mid g x=x g \text { for all } g \in G\}
$$

is a subgroup of G. This subgroup is called the center of G.
Question 6. Let G be a group and suppose that $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$. Prove that G is an abelian group.

Question 7. Suppose that G is a group and let $a, b \in G$. Prove that if $|a|=m$ and $|b|=n$ with $\operatorname{gcd}(m, n)=1$, then $\langle a\rangle \cap\langle b\rangle=\{e\}$.

Question 8. Prove that if G has no proper nontrivial subgroups then G is a cyclic group.
Question 9. Let p be prime and r a positive integer. How many generators does $\mathbb{Z}_{p^{r}}$ have?

