MATH 2020: Algebra 1 Tutorial 3 Worksheet - January 22, 2018

Question 1. Define the least common multiple of two nonzero integers a and b, denoted by $l c m(a, b)$, to be the nonnegative integer m such that
(1) $a \mid m$ and $b \mid m$
(2) If for some integer n, we have both $a \mid n$ and $b \mid n$, then $m \mid n$.

Prove that $\operatorname{gcd}(a, b)=1$ if and only if $\operatorname{lcm}(a, b)=a b$.
Question 2. Let $n \in \mathbb{N}$. Use the division algorithm to prove that every integer is congruent mod n to precisely one of the integers $0,1, \ldots, n-1$. Conclude that if r is an integer, then there is exactly one $s \in \mathbb{Z}$ such that $0 \leq s<n$ and $[r]=[s]$. Hence, the integers are indeed partitioned by congruence $\bmod n$.

Question 3. Prove that $\operatorname{gcd}(a, c)=g c d(b, c)=1$ if and only if $\operatorname{gcd}(a b, c)=1$ for integers a, b, and c.
Question 4. Let $S:=\mathbb{R} \backslash\{-1\}$ and define an operation on S by $a * b=a+b+a b$.
(a) Prove that $*$ is a binary operation.
(b) Prove that $(S, *)$ is an abelian group.

Question 5. Prove or disprove that every group with 6 elements is abelian.
Question 6. Let G be a group and $g \in G$. Prove that if $g^{2}=g$, then $g=e$, where e is the identity element.

Question 7. Let G be a finite group with an even number of elements. Prove that there exists $a \in G$ such that $a \neq e$ and $a^{2}=e$. Hint: The statement of question 6 is useful.

Question 8. Prove that a group G is abelian if and only if $(a b)^{-1}=a^{-1} b^{-1}$ for all $a, b \in G$.
Question 9. Given the groups \mathbb{R}^{*} and \mathbb{Z} where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$, let $G=\mathbb{R}^{*} \times \mathbb{Z}$ and define a binary operation \circ on G by $(a, m) \circ(b, n)=(a b, m+n)$. Show that G is a group under this operation.

