

MATH 2020: Algebra 1

Tutorial 3 Worksheet – January 22, 2018

Question 1. Define the *least common multiple* of two nonzero integers a and b , denoted by $\text{lcm}(a, b)$, to be the nonnegative integer m such that

- (1) $a|m$ and $b|m$
- (2) If for some integer n , we have both $a|n$ and $b|n$, then $m|n$.

Prove that $\text{gcd}(a, b) = 1$ if and only if $\text{lcm}(a, b) = ab$.

Question 2. Let $n \in \mathbb{N}$. Use the division algorithm to prove that every integer is congruent mod n to precisely one of the integers $0, 1, \dots, n - 1$. Conclude that if r is an integer, then there is exactly one $s \in \mathbb{Z}$ such that $0 \leq s < n$ and $[r] = [s]$. Hence, the integers are indeed partitioned by congruence mod n .

Question 3. Prove that $\text{gcd}(a, c) = \text{gcd}(b, c) = 1$ if and only if $\text{gcd}(ab, c) = 1$ for integers a, b , and c .

Question 4. Let $S := \mathbb{R} \setminus \{-1\}$ and define an operation on S by $a * b = a + b + ab$.

- (a) Prove that $*$ is a binary operation.
- (b) Prove that $(S, *)$ is an abelian group.

Question 5. Prove or disprove that every group with 6 elements is abelian.

Question 6. Let G be a group and $g \in G$. Prove that if $g^2 = g$, then $g = e$, where e is the identity element.

Question 7. Let G be a finite group with an even number of elements. Prove that there exists $a \in G$ such that $a \neq e$ and $a^2 = e$. *Hint:* The statement of question 6 is useful.

Question 8. Prove that a group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.

Question 9. Given the groups \mathbb{R}^* and \mathbb{Z} where $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$, let $G = \mathbb{R}^* \times \mathbb{Z}$ and define a binary operation \circ on G by $(a, m) \circ (b, n) = (ab, m + n)$. Show that G is a group under this operation.