MATH 2020: Algebra 1
 Tutorial 2 Worksheet - January 15, 2018

Question 1. Let S and T be finite sets of the same cardinality and $f: S \rightarrow T$. Prove that f is one-to-one if and only if f is onto.

Question 2. Define $S=\{1,2,3\}$. How many unique functions f are there such that $f: S \rightarrow S$? How many of them are bijections?

Question 3. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be maps.
(a) If f and g are both one-to-one, show that $g \circ f$ is one-to-one.
(b) If $g \circ f$ is one-to-one and f is onto, show that g is one-to-one.
(c) If $g \circ f$ is onto and g is one-to-one, show that f is onto.

Question 4. Prove the relation defined on \mathbb{R}^{2} by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if $x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}$ is an equivalence relation. What are the equivalence classes?

Question 5. Define a relation \sim on \mathbb{R} given by $x \sim y$ if $x-y \in \mathbb{Q}$. Prove or disprove: \sim is an equivalence relation.

Question 6. Define a relation \sim on \mathbb{R}^{2} by stating that $(a, b) \sim(c, d)$ if and only if $a^{2}+b^{2} \leq c^{2}+d^{2}$. Show that \sim is reflexive and transitive but not symmetric.

Question 7. For $a_{i} \in \mathbb{R}$ with $a_{i}>0$ for all i, show that for $n \in \mathbb{N}$,

$$
\sqrt[n]{a_{1} a_{2} \ldots a_{n}} \leq \frac{1}{n} \sum_{k=1}^{n} a_{k}
$$

Question 8. Let X be a set. Define the power set of X, denoted by $\mathcal{P}(X)$, to be the set of all subsets of X. For example,

$$
\mathcal{P}(\{a, b\})=\{\emptyset,\{a\},\{b\},\{a, b\}\} .
$$

For every positive integer n, show that a set with exactly n elements has a power set with exactly 2^{n} elements.

Question 9. For $n \in \mathbb{N}$, show that $5 \mid\left(6^{n}-1\right)$.

