MATH 2020: Algebra 1
 Tutorial 11 Worksheet - April 2, 2018

Question 1. Find all homomorphisms $\phi: \mathbb{Z} / 6 \mathbb{Z} \rightarrow \mathbb{Z} / 15 \mathbb{Z}$.
Question 2. Prove that \mathbb{R} is not isomorphic to \mathbb{C}.
Question 3. Prove or disprove: The ring

$$
\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}
$$

is isomorphic to the ring

$$
\mathbb{Q}(\sqrt{3})=\{a+b \sqrt{3} \mid a, b \in \mathbb{Q}\} .
$$

Question 4. Define a map $\phi: \mathbb{C} \rightarrow \mathbb{M}_{2}(\mathbb{R})$ by

$$
\phi(a+b i)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

Show that ϕ is an isomorphism of \mathbb{C} with $\phi(\mathbb{C})$.
Question 5. If R is a field show that the only two ideals of R are $\{0\}$ and R itself.
Question 6. Let $\phi: R \rightarrow S$ be a ring homomorphism. Prove that if R is a commutative ring, then $\phi(R)$ is a commutative ring. (You may assume that $\phi(R)$ is indeed a ring.)

Question 7. Let $\left\{I_{\alpha}\right\}_{\alpha \in A}$ be a collection of ideals in a ring R. Prove that $\cap_{\alpha \in A} I_{\alpha}$ is also an ideal in R. Give an example to show that if I_{1} and I_{2} are ideals in R, then $I_{1} \cup I_{2}$ may not be an ideal.

Question 8. Let R be an integral domain. Show that if the only ideals in R are $\{0\}$ and R itself, then R must be a field.

