MATH 2020: Algebra 1 Tutorial 10 Worksheet - March 26, 2018

Question 1. Let R be a ring of 2×2 matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)
$$

where $a, b \in \mathbb{R}$.
(a): Show that R has no identity. You may assume without proof that R is a ring.
(b): Show that there is a subring S of R that has an identity.

Question 2. Prove that the Gaussian integers, $\mathbb{Z}[i]$, are an integral domain.
Question 3. Let R be a ring. Define the center of R to be

$$
Z(R)=\{a \in R \mid a r=r a \text { for all } r \in R\}
$$

Prove that $Z(R)$ is a subring of R.
Question 4. Determine (with justification) the characteristic of the field formed by the set of matrices

$$
F=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

with entries in \mathbb{Z}_{2}.
Question 5. Let R be a ring with a collection of subrings $\left\{R_{\alpha}\right\}$. Prove that $\cap R_{\alpha}$ is a subring of R. Give an example to show that the union of two subrings is not necessarily a subring.

Question 6. Let S be a nonempty subset of a ring R. Prove that there is a subring R^{\prime} of R that contains S.

Question 7. Let R and S be arbitrary rings. Show that their Cartesian product is a ring if we dfine addition and multiplication in $R \times S$ by

$$
(r, s)+\left(r^{\prime}, s^{\prime}\right)=\left(r+r^{\prime}, s+s^{\prime}\right), \quad \text { and } \quad(r, s)\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)
$$

Question 8. An element $x \in R$ is called an idempotent if $x^{2}=x$. Prove that the only idempotents in an integral domain are 0 and 1 .

