l—Symmetries

The Beauty In Symmetry
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I—Symmetries

Transformations - Definitions (page 33 of text)

e A transformation of the points in the plane is a

e |f no two points are moved to a single position, then we say
that the transformation is

@ A transformation is onto if all the positions in the plane are
achieved by some points in the rearrangement.

o A bijection is a transformation that is both
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Symmetries Definition (page 33 of text)

e A transformation is rigid if it preserves

e Rigid transformations are called
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Translations

A translation is defined by a vector V and is denoted

f = trans(V).
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Example

Find the image of A under the symmetry f = trans(V).

it
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Example
Find the vector of translation V of the symmetry f = trans(V).

person

f(person)
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Reflections

A reflection is defined by a line £ and is denoted by f = refl(£).
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Example

Find the image of A under the symmetry f = refl({).

A
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Example
Find the line of reflection ¢ of the symmetry f = refl(¥).

person

f(person)
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Rotations

A rotation is defined by an angle 6 and a centre C of a circle,
denoted f = rot(C, 6).
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Example
Find the image of A under the symmetry f = rot(C,0).

e N
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Example

Find the center and angle of the symmetry f = rot(C, 0).

f (person)

person
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Example
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The Classification Theorem For Plane Symmetries

The composition of two symmetries is also a symmetry!

Theorem
Every symmetry of the plane is either:

@ a composition of a translation followed by a rotation; or

@ a composition of a translation followed by a reflection.
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Example
Find the image of A under the composition of the symmetries
fi = refl(£) followed by f, = rot(C, 60°).

C
®
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Definitions (page 55 & 56 of text)

e Given an object O in the plane, a symmetry of the object O
is a symmetry of the plane that rearranges the points of O
within the points of O such that every position in the object is
attained by some point following the rearrangement.

Note: We can think of this as a symmetry under which the
object

@ The set of all symmetries of an object is called the
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Example
Find the group of symmetries of the following object.
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Example
Find the group of symmetries of the following object.
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Example

Find the group of symmetries of the following object.
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_
Example

Find the group of symmetries of the following object.
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Example

Find the group of symmetries of the following object.
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L Group Of Symmetries

Example

Find the group of symmetries of the following object.
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Example

Find the group of symmetries of the following object.
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Example

Find the group of symmetries of the following object.
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Example

Find the group of symmetries of the following object.
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Definition (page 61 of text)

@ Objects in the plane that have translation symmetries such
that the vectors of the translation symmetries are all integer
multiples of *one* fixed vector are called

@ The groups of symmetries are called
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Frieze Patterns - Example
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Frieze Patterns - Example
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Frieze Patterns - Example

B
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Frieze Patterns - Example
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Frieze Patterns - Example
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Frieze Patterns - Example

AROROR
W



- Frieze Patterns

Frieze Patterns - Example
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The Classification Theorem For Friezes

Theorem
The seven frieze groups F1, Fo, F3, F4, F5, F6 and F7 are the only
frieze groups.
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Definitions (page 73 of text)

@ An object in the plane is a wallpaper design if:

(a) There are two non-parallel vectors such that every translation
that can be obtained by composing a translation along an
integer multiple of the first vector followed by a translation
along an integer multiple of the second vector is a symmetry of
the object.

(b) Every translation symmetry of the object must be of the kind

specified in (a).

e The groups of symmetries of wallpaper designs are called
wallpaper groups.
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Wallpapers - Example
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Wallpapers - Example
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Wallpapers - Example

WAV
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Definition (page 74 of text)

Any arrangement of objects on a plane in such a way that all of
the plane is covered and such that any two tiles either share a
common corner, intersect along a pair of their edges, or do not
intersect at all, is called a tiling of the plane. The objects used to
cover the plane are called tiles.
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Regular Tilings Of The Plane
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Regular Tilings Of The Plane (pages 77-79 of text)

A tiling of the plane is regular if:

o all the tiles used are regular polygons (equilateral triangles,
squares, regular pentagons, etc.);

@ every two adjacent polygons have either a common point or a
common edge;

o if the polygons around every common point are of the same
type.
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Monohedral Tilings

Theorem
There are exactly 3 monohedral regular tilings of the plane.
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Archimedean Tilings
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Useful Reference

@ https://en.wikipedia.org/wiki/Euclidean_tilings_
by_convex_regular_polygons
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