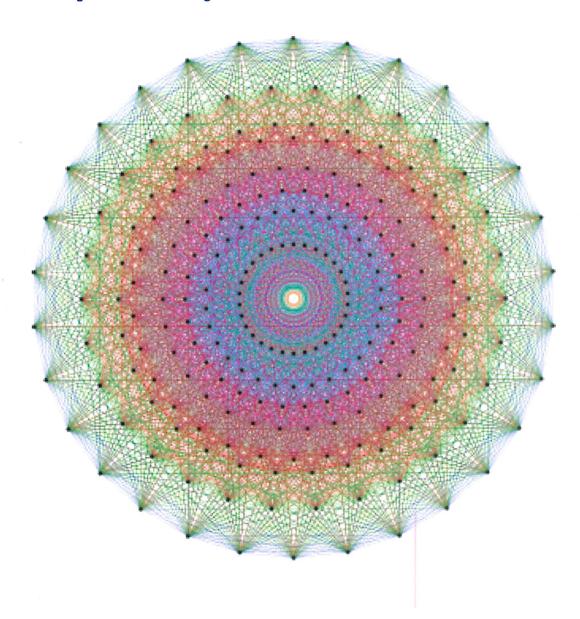
The Beauty In Symmetry



Transformations - Definitions (page 33 of text)

• A transformation of the points in the plane is a

 If no two points are moved to a single position, then we say that the transformation is

• A transformation is **onto** if all the positions in the plane are achieved by some points in the rearrangement.

• A bijection is a transformation that is both

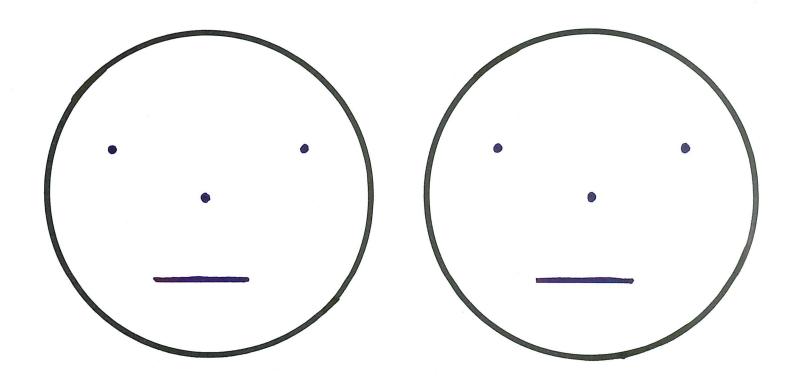
Symmetries Definition (page 33 of text)

• A transformation is **rigid** if it preserves

Rigid transformations are called

Translations

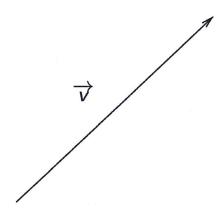
A **translation** is defined by a vector \overrightarrow{v} and is denoted $f = trans(\overrightarrow{v})$.



∟_{Basic} Symmetries

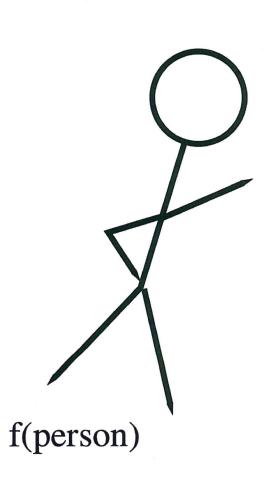
Example

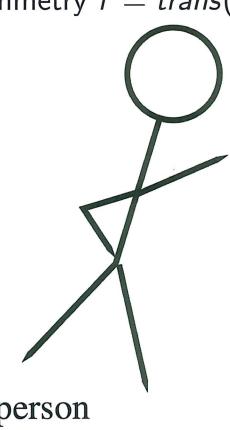
Find the image of A under the symmetry $f = trans(\overrightarrow{v})$.



.

Find the vector of translation \overrightarrow{v} of the symmetry $f = trans(\overrightarrow{v})$.

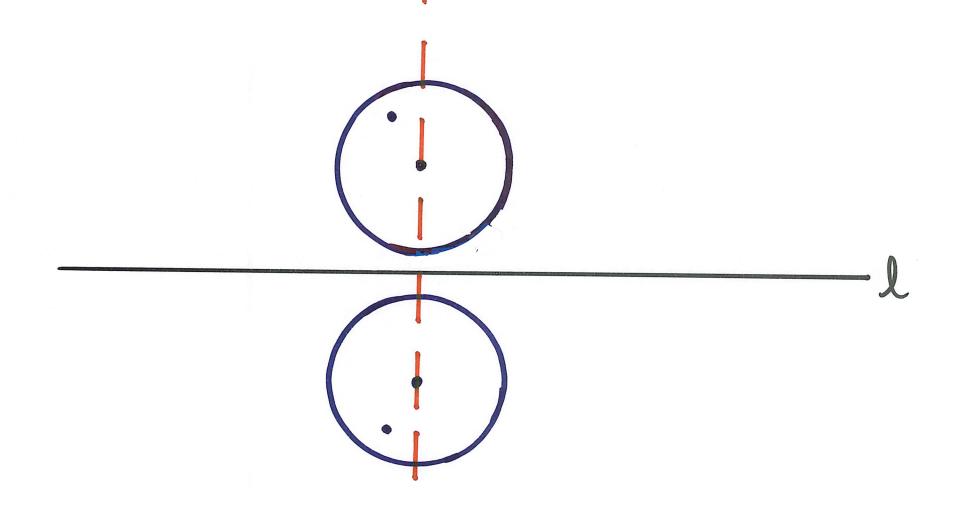




person

Reflections

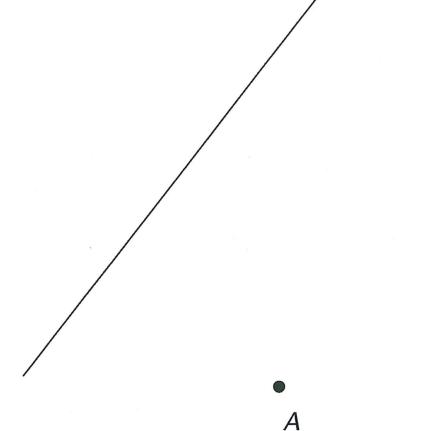
A **reflection** is defined by a line ℓ and is denoted by $f = refl(\ell)$.



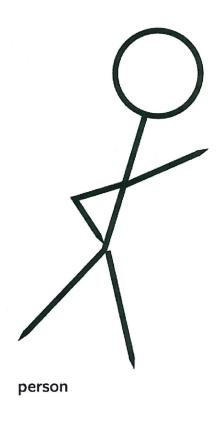
LBasic Symmetries

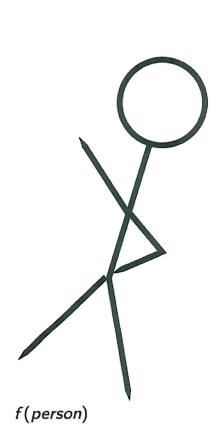
Example

Find the image of A under the symmetry $f = refl(\ell)$.



Find the line of reflection ℓ of the symmetry $f = refl(\ell)$.

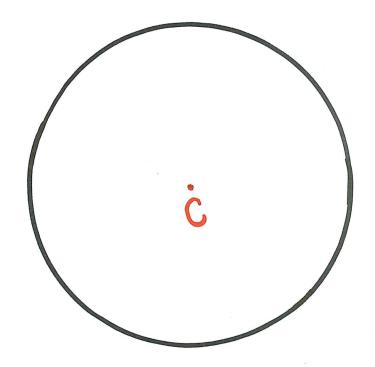




Basic Symmetries

Rotations

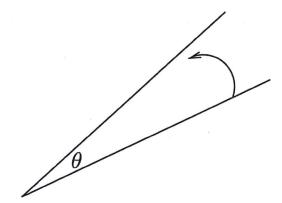
A **rotation** is defined by an angle θ and a centre C of a circle, denoted $f = rot(C, \theta)$.



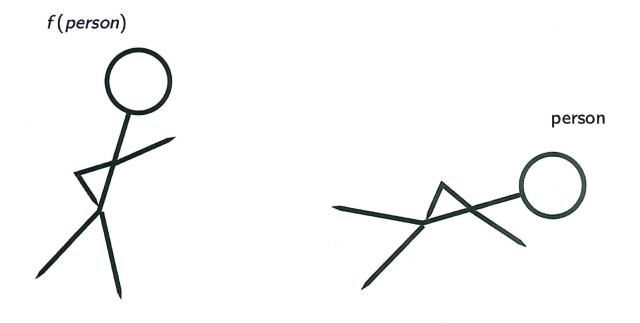
L_{Basic} Symmetries

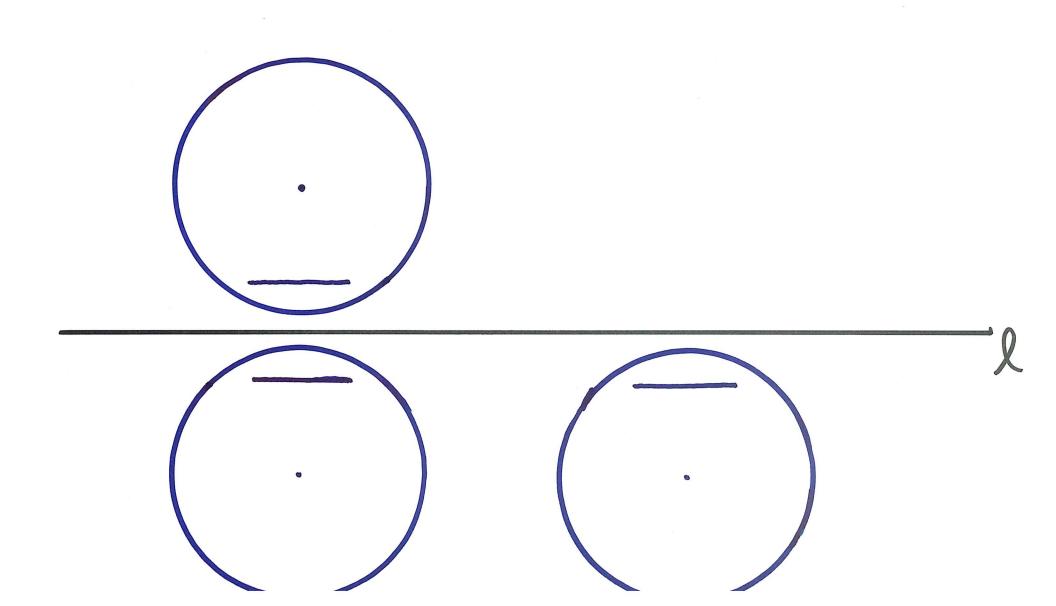
Example

Find the image of A under the symmetry $f = rot(C, \theta)$.



Find the center and angle of the symmetry $f = rot(C, \theta)$.





The Classification Theorem For Plane Symmetries

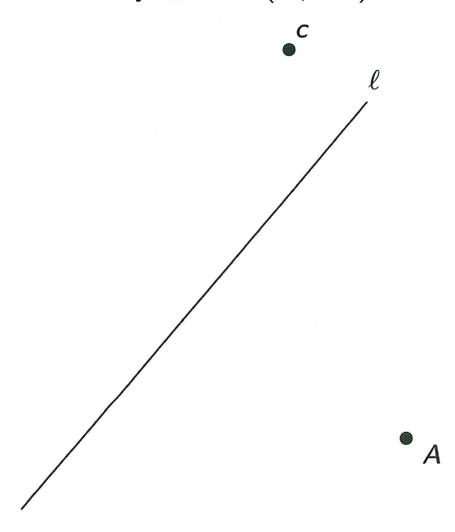
The composition of two symmetries is also a symmetry!

Theorem

Every symmetry of the plane is either:

- a composition of a translation followed by a rotation; or
- a composition of a translation followed by a reflection.

Find the image of A under the composition of the symmetries $f_1 = refl(\ell)$ followed by $f_2 = rot(C, 60^\circ)$.

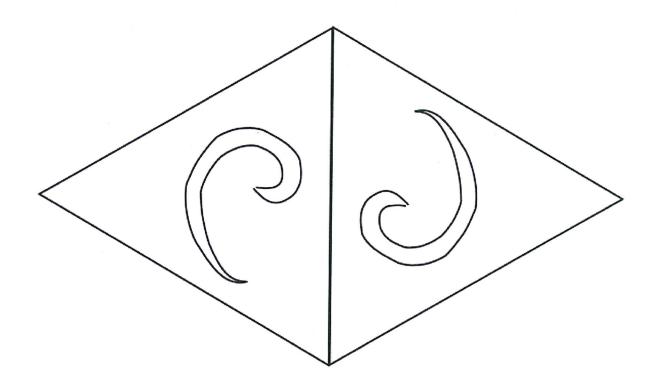


Definitions (page 55 & 56 of text)

• Given an object O in the plane, a **symmetry of the object** O is a symmetry of the plane that rearranges the points of O within the points of O such that every position in the object is attained by some point following the rearrangement.

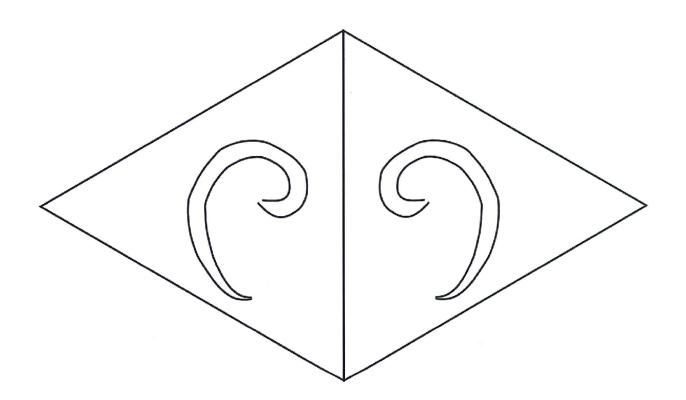
Note: We can think of this as a symmetry under which the object

The set of all symmetries of an object is called the



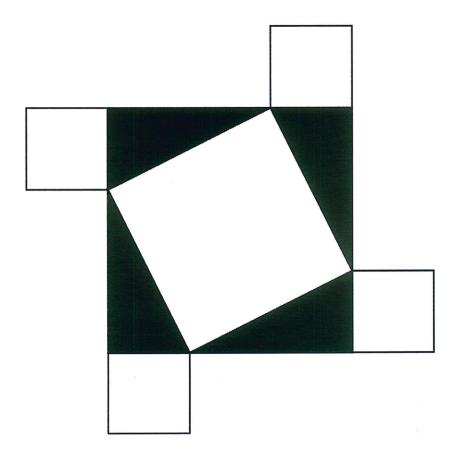
☐ Group Of Symmetries

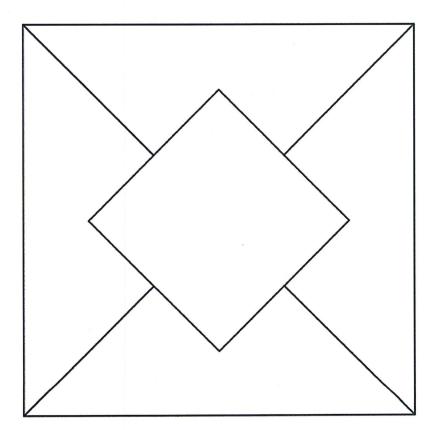
Example

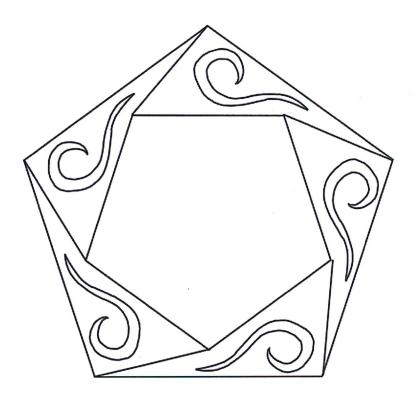


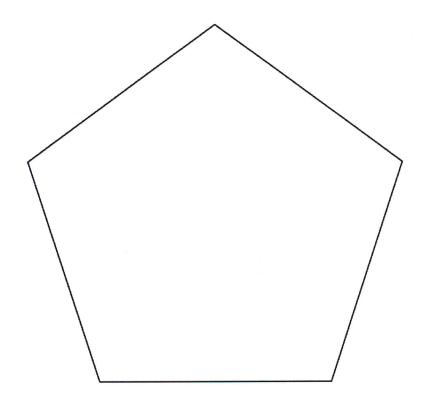
Group Of Symmetries

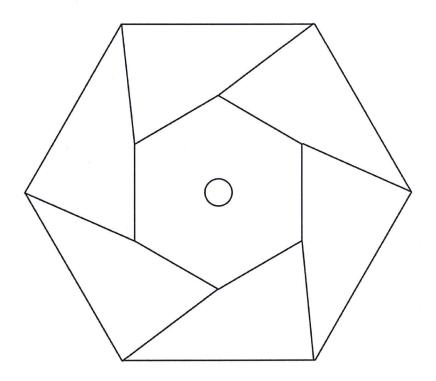
Example

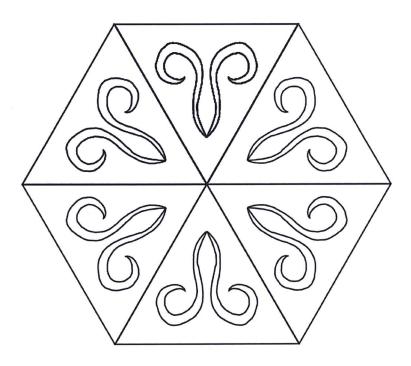






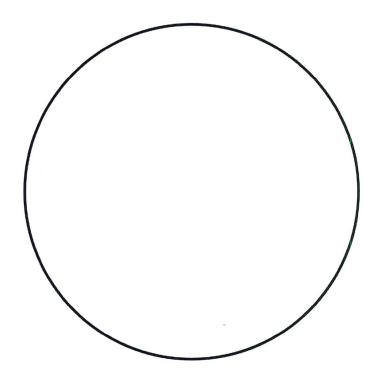






☐Group Of Symmetries

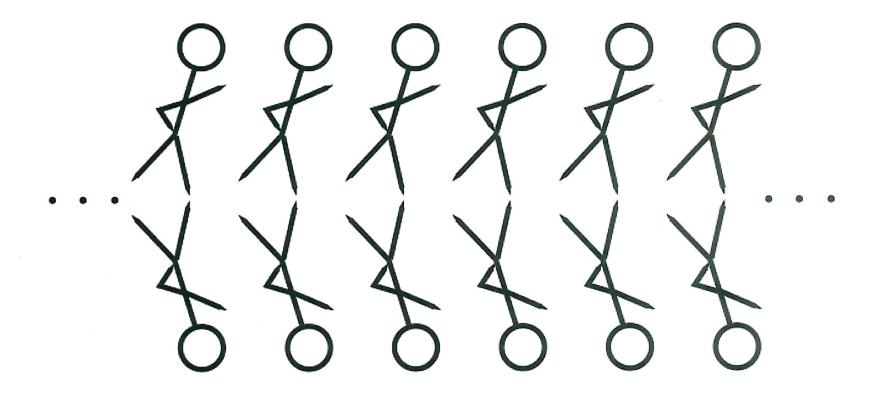
Example



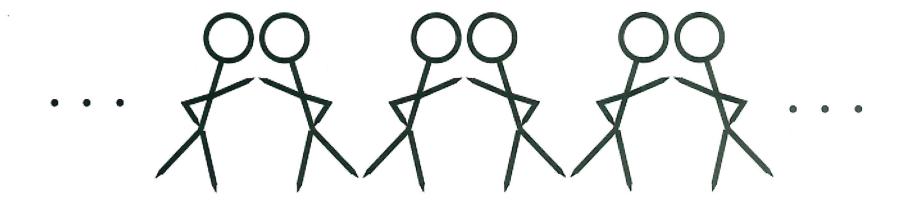
Definition (page 61 of text)

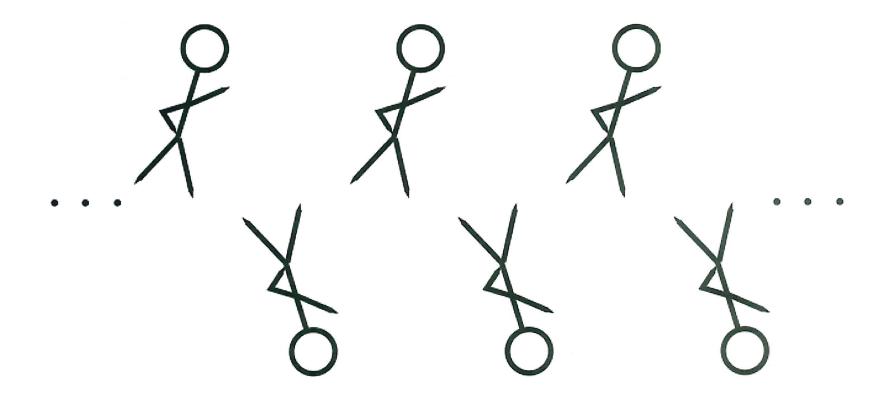
 Objects in the plane that have translation symmetries such that the vectors of the translation symmetries are all integer multiples of *one* fixed vector are called

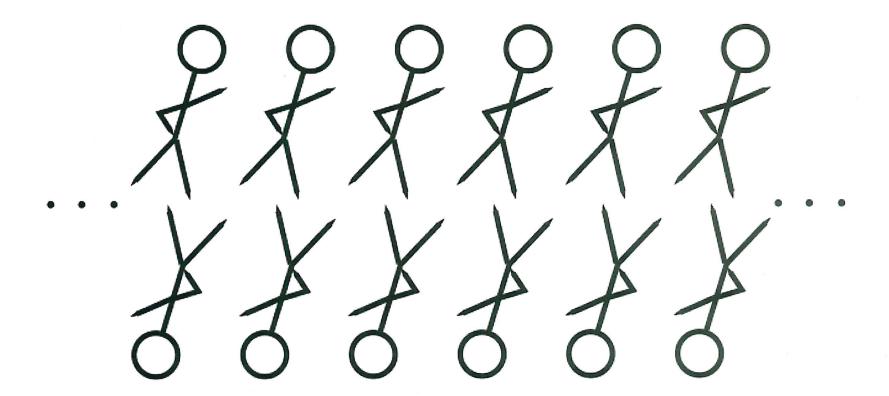
The groups of symmetries are called

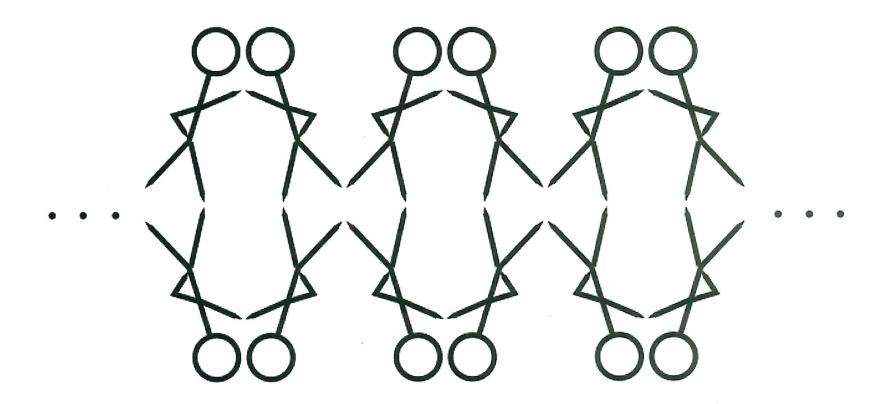


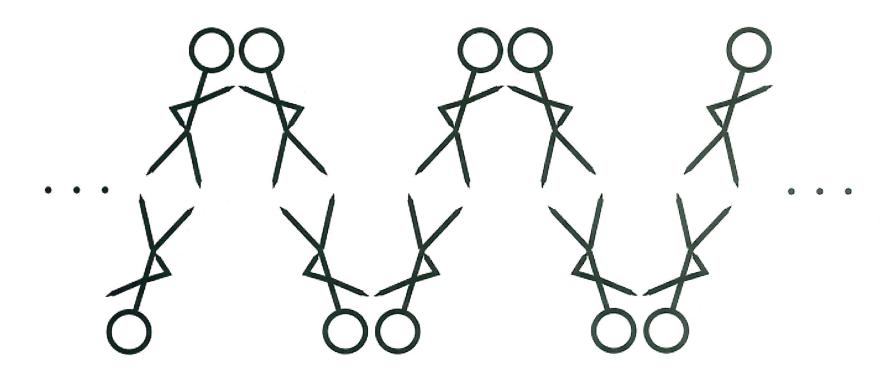
LFrieze Patterns











The Classification Theorem For Friezes

Theorem

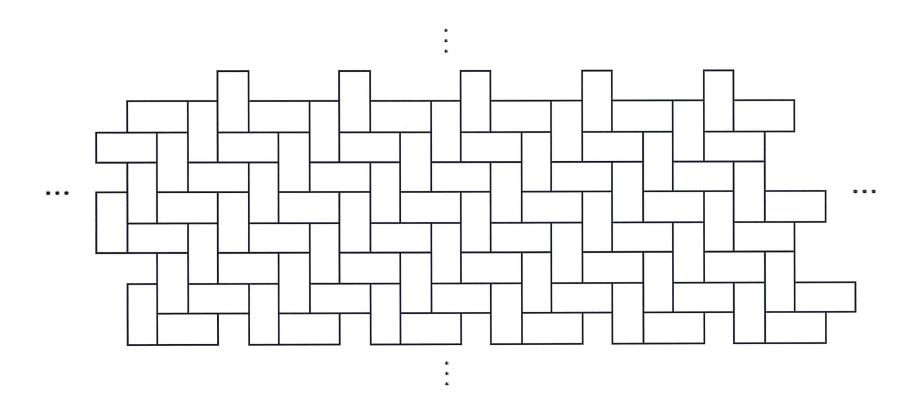
The seven frieze groups F_1 , F_2 , F_3 , F_4 , F_5 , F_6 and F_7 are the **only** frieze groups.

Definitions (page 73 of text)

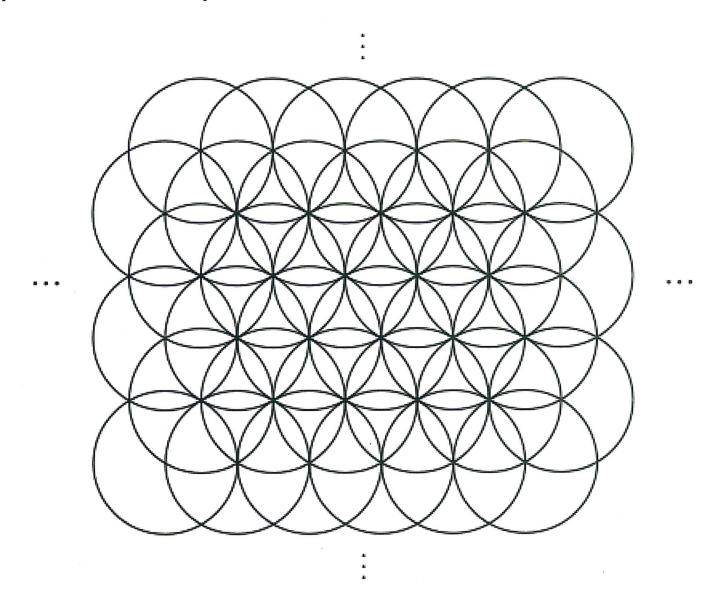
- An object in the plane is a **wallpaper design** if:
 - (a) There are two non-parallel vectors such that every translation that can be obtained by composing a translation along an integer multiple of the first vector followed by a translation along an integer multiple of the second vector is a symmetry of the object.
 - (b) Every translation symmetry of the object must be of the kind specified in (a).

 The groups of symmetries of wallpaper designs are called wallpaper groups. $\mathrel{\bigsqcup_{\mathsf{Wallpapers}}}$

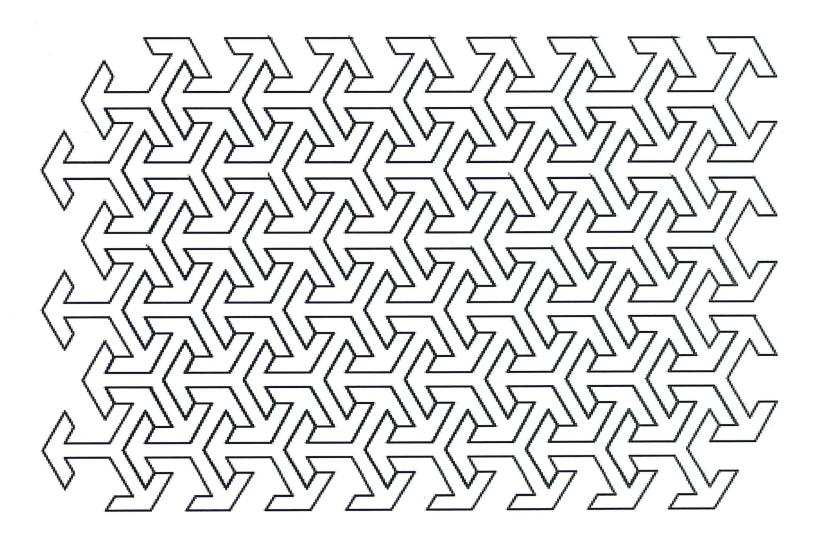
Wallpapers - Example



Wallpapers - Example



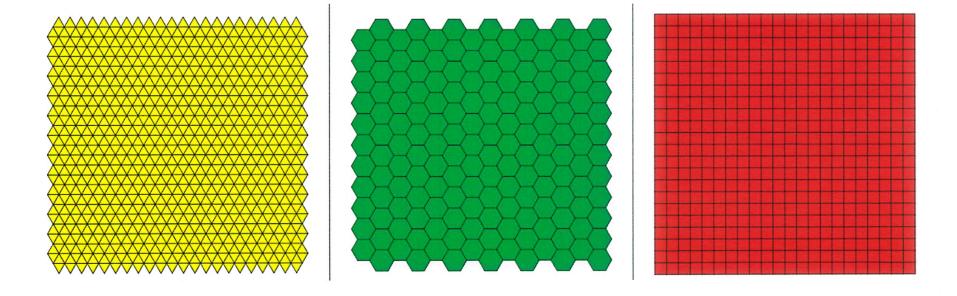
Wallpapers - Example



Definition (page 74 of text)

Any arrangement of objects on a plane in such a way that all of the plane is covered and such that any two tiles either share a common corner, intersect along a pair of their edges, or do not intersect at all, is called a **tiling** of the plane. The objects used to cover the plane are called **tiles**. LTilings

Regular Tilings Of The Plane



Regular Tilings Of The Plane (pages 77–79 of text)

A tiling of the plane is regular if:

- all the tiles used are regular polygons (equilateral triangles, squares, regular pentagons, etc.);
- every two adjacent polygons have either a common point or a common edge;
- if the polygons around every common point are of the same type.

Monohedral Tilings

Theorem

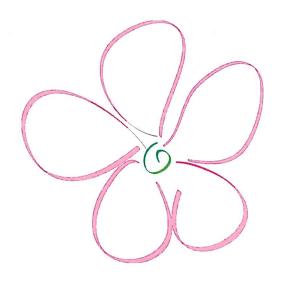
There are exactly 3 monohedral regular tilings of the plane.

 L_{Tilings}

Archimedean Tilings

Useful Reference

• https://en.wikipedia.org/wiki/Euclidean_tilings_ by_convex_regular_polygons



QUESTIONS???