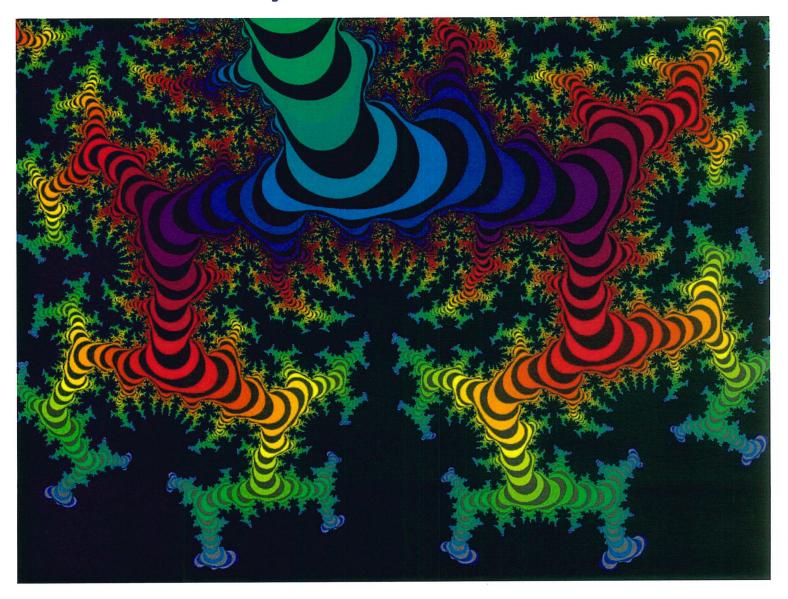
Fractals: Self-Similarity



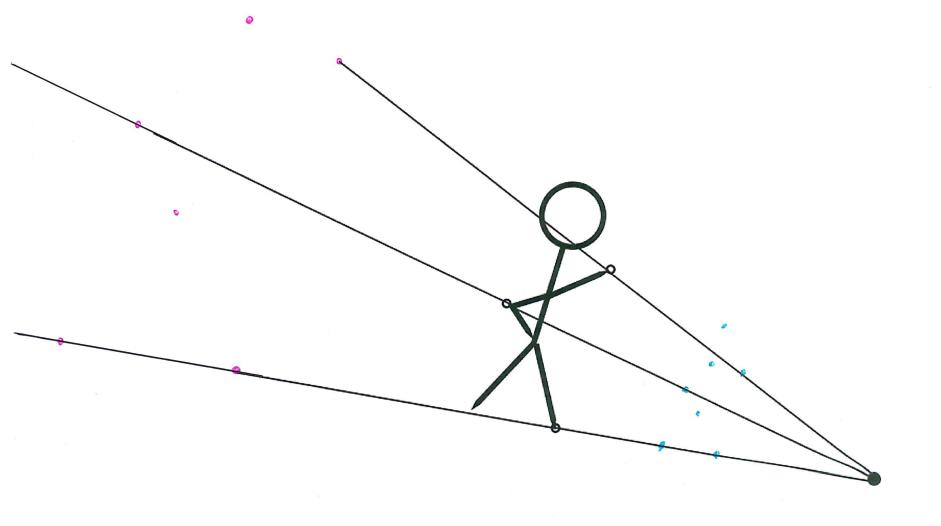
Definition (page 92 of text)

A plane transformation f is called a **similarity** if there exists a positive number α such that for every two points A and B on the plane, we have

Note: If $\alpha = 1$ then

• The number α is called the

Example: Central Similarities (Dilations)



└─Similarities & Fractals └─Similarities

Example

Find: the center of the central similarity f; the image of C under f.

f(B)

C B f(A)

Spiral Similarity

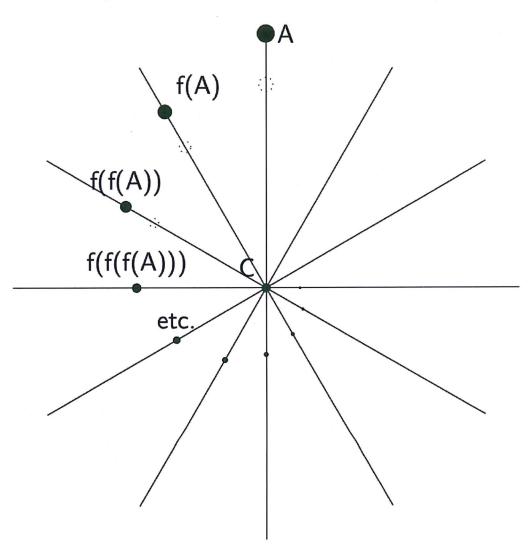
Let f be a composition of a

Note: *f* is a similarity.

• If the center is the same point for both the rotation and central similarity, then f is called a **spiral similarity**.

Example

•
$$\alpha = 0.8, \theta = 30^{\circ}$$
, center = C



Dilative Reflection

Let f be a composition of a

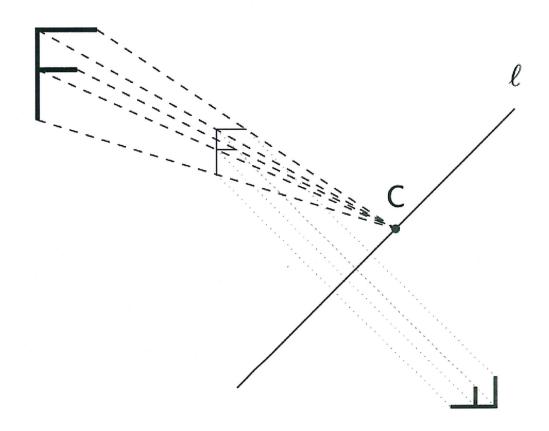
Note: *f* is a similarity.

• If the center of the central similarity is on the line of reflection, then f is called a **dilative reflection**.

Similarities & Fractals
Similarities

Example

• $\alpha = 0.5$, center = C, line = ℓ



Classification For Similarities

Theorem

Every similarity is a symmetry, a spiral similarity, or a dilative reflection.

Similar Objects

Two objects are **similar** if they have the same shape, regardless of orientation.

Example: Similar Always? Never? Sometimes?

- two rectangles having the same area
- two Golden triangles
- two isosceles triangles with different heights
- two isosceles triangles with the same height
- two Golden obtuse triangles having different heights
- two circles of different diameters
- two pentagons
- a square and a Golden Rectangle

Squaring Transformation

Square the distance, double the angle.

Definition (page 110 of text)

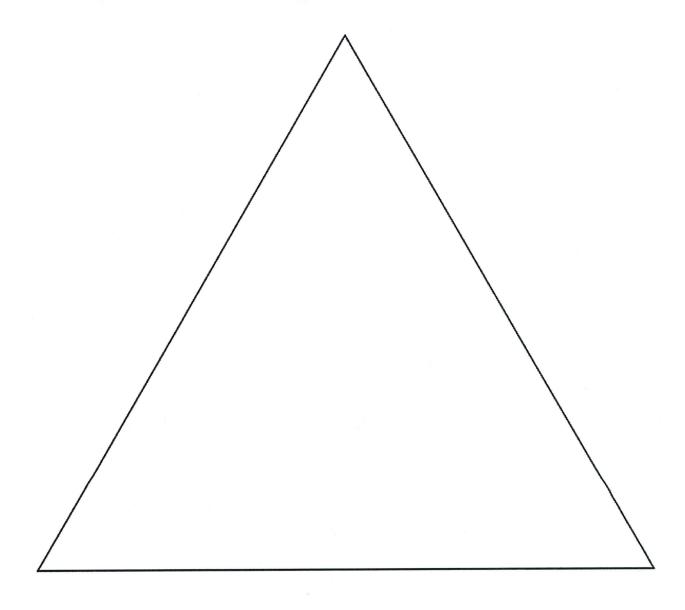
A **fractal** is an object *O* that possesses the property of *proper* self-similarity.

• This means that there is a part of O, say A_1 , which is

• That is, there is a similarity that sends a part A_1 of O onto a proper part A_2 of A_1 .

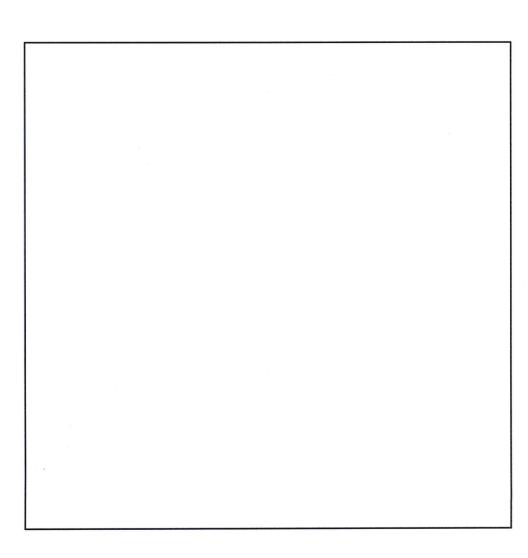
Note: The similarity cannot be a

Example: Sierpinski Triangle



└─Similarities & Fractals └─Fractals

Example

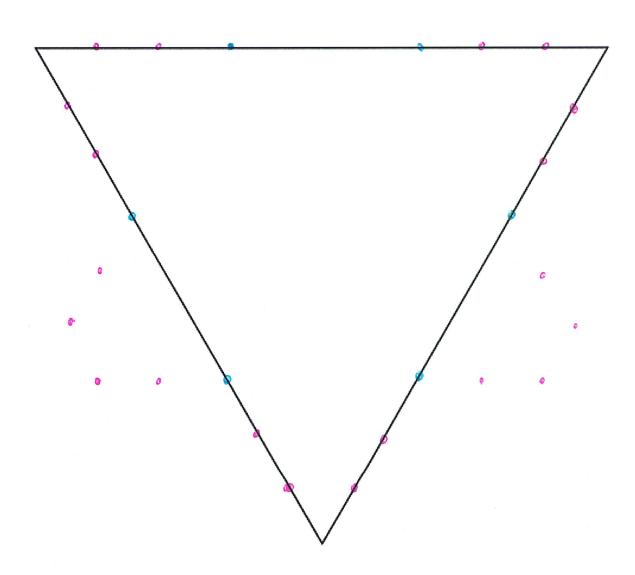


Similarities & Fractals
Fractals

Fractal Tree

Similarities & Fractals
Fractals

Koch Snowflake



Definitions (page 124 of text)

• A set of points in the plane is **bounded** if

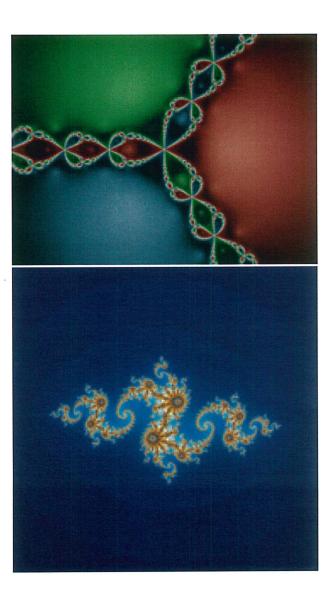
 A set of points in the plane is unbounded if the set is not bounded.

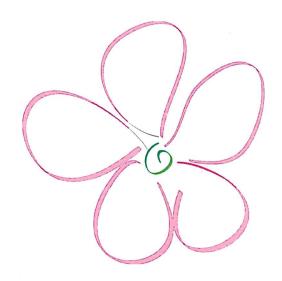
Juliet Sets – Definitions (page 125 of text)

Let f be a transformation of the points in the plane.

- The **prisoner set** (or **filled Julia set**) is the set of points A where $\{A, f(A), f(f(A)), \ldots\}$ is
- The **escape set** is the set of points A where $\{A, f(A), f(f(A)), \ldots\}$ is
- The Juliet set is the boundary between the prisoner set and the escape set.

Juliet Sets In Colour!





QUESTIONS???