## Hyperbolic Geometry



#### Recall: Euclid's Postulates For Euclidean Geometry

• There exists a line through distinct points P and Q.

• Line segments can be extended.

Circles exist.

All right angles are congruent.

#### Euclid's 5th Postulate

For every line  $\ell$  and a point P that does not lie on  $\ell$ , there exists an unique line m through P and parallel to  $\ell$ .

**Note:** There are two ways that we can change this postulate:

- replace "an unique" with
- replace "an unique" with

#### Hyperbolic 5th Postulate

Given a line  $\ell$  and a point P not on  $\ell$ , there are **many** lines through P and parallel to  $\ell$ .

\*\*Note: In this context, parallel MEANS

#### Poincaré Model Of A Hyperbolic Geometry

Given a circle H with center O:

The points of the geometry are all the points that are

- Lines of the geometry are of two types:
  - diameters;
  - parts of circles that are

#### Poincaré Model



#### Hyperbolic Distance

The hyperbolic distance between two hyperbolic points A and B is determined by a ratio of distances between A and B and the points P and Q on the hyperbolic horizon on the unique line joining A and B.



#### Construction 1: Hyperbolic Lines Through Center O of H

All hyperbolic lines that pass through O are



## Preliminary For Hyperbolic Lines Not Through Center: Circle Inversion



#### Circle Inversion



#### Construction 1: Hyperbolic Lines Through $A \neq O$

**Definition:** The perpendicular bisector of the line Ainv(A) is called the

All of the lines through A are:

- the diameter that passes through A;
- the part of the interior to H of a circle that has center on  $\ell_A$  and passes through

## Construction 1: Hyperbolic Lines Through $A \neq O$



#### Construction 1: Hyperbolic Lines Through $A \neq O$



# Construction 2: Hyperbolic Line Passing Through *A* & *B* (Main Idea!)



### Construction 2: Hyperbolic Line Passing Through A & B



## Alternate Construction 2: Hyperbolic Line Through A & B



## Construction 3: Intersecting Hyperbolic Lines At 90° Angle



## Constr. 3: Intersecting Hyperbolic Lines At Given Angle



## Construction 4: An Equilateral Triangle



☐ Hyperbolic Geometry

### Sum Of The Angles Of A Triangle

In a hyperbolic plane, the sum of the angles of a triangle is



QUESTJONS???