Leonardo Pisano (Fibonacci)

The Classic Problem

From Liber Abaci by Pisano Fibonacci (around AD 1200; also introduced the Hindu-Arabic numeral system to Western Europe):

A certain man puts a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed that every month each pair begets a new pair, which from the second month on become productive?

- Implicitly assuming that no rabbit dies!

The Rabbit Problem: The First Few Months

Month	1	2	3	4	5	6	7	8
Total Pairs	1	1	2					

Some Notation and Observations

- Let f_{n} be the number of pairs of rabbits after n months.

We have:

The Recursive Definition

The Fibonacci Numbers are the numbers in the sequence defined by

$$
\begin{aligned}
& f_{1}=1 \\
& f_{2}=1 \\
& f_{n}=f_{n-1}+f_{n-2}
\end{aligned}
$$

Example With Recursive Definition

Given that $f_{19}=4181$ and $f_{16}=987$, what are f_{17} and f_{18} ?

An Explicit Formula

Binet's Formula for the Fibonacci Numbers:

$$
f_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

An Approximation

- Recall: $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618$ is the Golden Ratio.

Look at what happens as $n \rightarrow \infty$:

$$
f_{n} \approx \frac{\varphi^{n}}{\sqrt{5}}
$$

A Cute Conversion

- $\varphi \approx$ the number of kilometers in a mile! (Exact $=1.609344$.)
E.g.: Convert 30 kilometers to its equivalent in miles:

$$
30=21+8+1=f_{8}+f_{6}+f_{2} \approx \frac{\varphi^{8}}{\sqrt{5}}+\frac{\varphi^{6}}{\sqrt{5}}+\frac{\varphi^{2}}{\sqrt{5}}
$$

Then the number of miles in 30 kilometers would be approximately

$$
\frac{30}{\varphi} \approx \frac{\varphi^{7}}{\sqrt{5}}+\frac{\varphi^{5}}{\sqrt{5}}+\frac{\varphi}{\sqrt{5}} \approx f_{7}+f_{5}+f_{1}=13+5+1=19
$$

The actual number of miles in 30 kilometers is 18.64.

Ratios of Consecutive Fibonacci Numbers

Ratio of Fibonacci Numbers	Ratio	Decimal Equivalent
f_{2} / f_{1}	$1 / 1$	
f_{3} / f_{2}	$2 / 1$	
f_{4} / f_{3}	$3 / 2$	
f_{5} / f_{4}	$5 / 3$	
f_{6} / f_{5}	$8 / 5$	
f_{7} / f_{6}	$13 / 8$	
f_{8} / f_{7}	$21 / 13$	
f_{9} / f_{8}	$34 / 21$	
f_{10} / f_{9}	$55 / 34$	
f_{11} / f_{10}	$89 / 55$	

Fibonacci Spiral

\square											T

Fibonacci Flowers

ᄂThe Fibonacci Numbers

Fibonacci \& The Daisy

(Reproduced from: 2005 Key College Publishing, Instructor Resources and Adjunct Guide: The Heart of Mathematics, Burger/Starbird/Bergstrand)

ᄂThe Fibonacci Numbers

Fibonacci \& The Daisy

(Reproduced from: ibid)

21 spirals

Fibonacci \& The Daisy

(Reproduced from: ibid)

34 spirals
$\left\llcorner_{\text {The Fibonacci Numbers }}\right.$

Fibonacci \& Sunflower Spirals

(Reproduced from: ibid)

More Fibonacci Numbers And Nature

A great reference to check out is:
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/ Fibonacci/fibnat.html\#section3

QuદSTJONs???

